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Abstract
The motion of the polymer center of mass (CM) is driven by two stochastic
terms that are Gaussian white noise generated by standard thermal stirring
and chain polymerization processes, respectively. It can be described by the
Langevin equation and is Brownian non-Gaussian by calculating the kurtosis.
We derive the forward Fokker–Planck equation governing the joint distribu-
tion of the motion of CM and the chain polymerization process. The backward
Fokker–Planck equation governing only the probability density function (PDF)
of CM position for a given number of monomers is also derived. We derive the
forward and backward Feynman–Kac equations for the functional distribution
of the motion of the CM, respectively, and present some of their applications,
which are validated by a deep learning method based on backward stochastic
differential equations (BSDEs), i.e. the deep BSDE method.

Keywords: polymer, Brownian non-Gaussian, Fokker–Planck equation,
Feynman–Kac equation, deep BSDE method

1. Introduction

A growing number of researchers are interested in Brownian non-Gaussian diffusion [1]. The
mean squared displacement (MSD) of this type of diffusion shows a linear dependence on
time t, but the PDF of the diffusion particle is strongly non-Gaussian [2]. Under the assump-
tion of a large separation of timescales, the central limit theorem states that the distribution
of the Fickian diffusion particle is Gaussian form for sufficient long time; however, it does
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not hold without this assumption [3]. The processes of Brownian non-Gaussian diffusion are
ubiquitously observed in many complex systems. For example, in biology, it can be found in
the process of lipid molecules or proteins embedded in into protein-dense lipid membranes
[4, 5], biological cells [6–10], and anisotropic liquid crystals [11]. The authors have shown
that the diffusion of passive tracers in thin films of swimming bacteria [12], in suspensions of
flagellated eukaryotes [13] as well as in phospholipid tubes [3] is Brownian non-Gaussian by
using numerical simulations. For more examples, one can see [14, 15]. In addition, [16–18]
state that the motion of the center of mass (CM) of the polymer is Brownian non-Gaussian.

In this paper, we focus on the transport properties of the Brownian non-Gaussian diffusion
process. There are two popular frameworks to describe diffusion from microscopic aspects,
namely the randomwalk and the Langevin equation [19, 20]. Based on the randomwalk theory,
the continuous time randomwalk (CTRW) [21–23] and the Lévywalk [24] are two representat-
ive models to describe anomalous diffusion. The Montroll–Weiss equation the CTRW model
is derived by the traditional methods of Fourier and/or Laplace transforms. Combined with
the concrete expressions of the waiting time and jump length distributions, the corresponding
fractional Fokker–Planck equation [25–27] can be obtained, which is further used to analyze
the transport properties of the stochastic dynamics. However, the fractional Fokker–Planck
equation of the Lévy walk is not easy to solve due to its space-time coupled jump length by
finite propagation velocity [24]. Hermite polynomial expansions [28] are introduced in [29]
to solve this kind of problem. By this method, [30–32] respectively discuss the dynamics of
Lévy walk in harmonic potential field, in mixed potential as well as in one dimensional uni-
form non-static media. The Langevin picture is usually used to describe diffusion under the
action of external potential or noise induced by the fluctuating environment [33]. The ordin-
ary Fokker–Planck equation and the spatial fractional Fokker–Planck equation [34–39] are
respectively derived from the Langevin equation with Gaussian white noise and heavy-tailed
stable noise, respectively. In addition, the effects of constant external force on the Lévy walk
are also discussed under the Langevin picture in [40].

The functional of the diffusion particle trajectory x(t) is defined as Y=
´ t
0U(x(τ))dτ , where

U(x) is a prescribed function [41]. This type of functional is observed in many fields, ran-
ging from physics [42–44] to finance [45, 46], hydrodynamics [47], etc. The equation govern-
ing the joint distribution of displacement and functional is called the forward Feynman–Kac
equation, while the equation focusing only on the distribution of the functional Y is called the
backward Feynman–Kac equation. The classical Feynman–Kac equation for Brownian motion
was derived by Kac in 1949 in [48]. Later, the fractional Feynman–Kac equation for subdif-
fusion CTRW [49] is developed based on random walk theory. More and more Feynman–Kac
equations are derived through this theoretical framework [50–54]. Furthermore, the forward
Feynman–Kac equation under the Langevin picture with Gaussian white noise is derived using
the Itô formula [55, 56]. For the more general overdamped Langevin equation with Lévy noise,
[57] derives the corresponding Feynman–Kac equation. The Feynman–Kac equation has many
applications, especially in calculating the distribution of statistical observables, since the stat-
istical observables are closely related to the functionals. For example, the distribution of time
spent in a given domain can be calculated by taking U(x) = 1 in the domain considered and
U(x) = 0 otherwise [58, 59]. The above results can be further used to study the chemical reac-
tions in kinetic as well as to obtain the first passage time [60]. Another representative applic-
ation of functional distribution is presented in the study of NMR experiment [61].

In this paper, we aim to derive the Fokker–Planck equation and the Feynman–Kac equation
of the polymer CM diffusion process described by the Langevin picture with Gaussian white
noise. However, the diffusion coefficient is stochastic, determined by the chain polymeriza-
tion process [62], which occurs as a birth-death process. This paper is organized as follows. In
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section 2, we introduce the process of polymer CM diffusion. In section 3, we turn to the deriv-
ation of the Fokker–Planck equation of our considered model with the help of the Feynman–
Kac equation of the chain polymerization process. The Feynman–Kac equation of the polymer
CM position functional is discussed in section 4, and its applications are analyzed in sections 5
and 6 by deep BSDE method combined with Monte Carlo simulation. Finally, we conclude
the paper with some discussions.

2. Introduction of the model

As stated in [18], the motion of polymer CM is Brownian non-Gaussian during the process of
monomer polymerization/depolymerization. The microscopic equation corresponding to this
model can be described by the following Langevin picture

dr(t) =
√
2D(n(t))dB(t) , (1)

where r(t) represents the position of the polymer CM at time t, and n(t) represents the chain
polymerization process and counts the number of monomers in the polymer. Notably, it is
a stochastic process with a non-negative integer value. B(t) is a one-dimensional Brownian
motion with mean 0 and variance t. The ordinary diffusion equation of the CM position is
derived in [18] with the diffusion coefficient D(n), which is the chain polymerization process
in the form of D0

(n+nmin)α
, where D0 and α are given for the chosen polymer model [63, 64] and

the minimum number of monomers in the polymer is recorded as nmin [65].
The following is a brief introduction to the chain polymerization process n(t). Assume that

the initial number of monomers in the polymer is n0, and λ(n) is the association rate, which
depends on the number of monomers n, while µ is the size independent dissociation rate. By
changing the variable n 7→ n− nmin, [18, 66] derive the master equation governing the prob-
ability distribution of the chain polymerization process PN(n, t|n0),

∂tPN (n, t|n0) = µPN (n+ 1, t|n0)+λ(n− 1)PN (n− 1, t|n0)
− (µ+λ(n))PN (n, t|n0) ,

n> 0,

∂tPN (n, t|n0) = µPN (n+ 1, t|n0)−λ(0)PN (n, t|n0) , n= 0.
(2)

The Monte Carlo simulations of PN(n, t|n0) are shown on the left side of figure 1. In addition,
[18] implies that a stationary distribution P∗

N(n) can eventually be reached after sufficiently
long time.

It is well known that the increment of Brownian motion is stationary and independent.
Combined with its 1

2 self-similarity, (1) can be rewritten in the following form

r(t) = B(s(t)) , s(t) =
ˆ t

0
2D(n(τ))dτ. (3)

Let G(r,s) be the PDF of the polymer CM position r the new ‘time’ scale s. According to the
ordinary diffusion equation of Brownian motion, it has the form

∂

∂s
G(r,s) =

1
2
∂2

∂r2
G(r,s) . (4)
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Figure 1. Numerical simulations of the distribution of the chain polymerization process
PN(n, t|n0) as well as the distribution of polymer CM position u(r, t). The above results
are obtained by averaging over 104 realizations with n0 = 0, α= 1, nmin = 3, t= 103

and D0 = λ= µ= 1.

Let u(r, t) be the PDF of the CM position r at real time t and S(s, t) the PDF of the stochastic
process s(t). By the subordination theory [67] we get

u(r, t) =
ˆ ∞

0
S(s, t)G(r,s)ds. (5)

Numerical simulations of the distribution of the polymer CM position u(r, t) are shown on
the right side of figure 1. In addition, the asymptotic expression of the MSD in large time
scale can be derived using (5). Starting with the definition of MSD and combining it with (5),
we have

〈r2 (t)〉=
〈ˆ t

0

2D0

(n(τ)+ nmin)
α dτ

〉
=

∞∑
n=0

2D0

(n+ nmin)
α

ˆ t

0
PN (n, τ |n0)dτ.

(6)

For large time t� t
′
, a steady state can eventually be reached for the chain polymerization

process; it holds that PN(n, t|n0)' P∗
N(n). By neglecting the lower order term of large time

scale t, the MSD behaves as

〈r2 (t)〉=
∞∑
n=0

2D0

(n+ nmin)
α

(ˆ t ′

0
PN (n, τ |n0)dτ +

ˆ t

t ′
PN (n, τ |n0)dτ

)

'
∞∑
n=0

2D0

(n+ nmin)
α

ˆ t

t ′
P∗
N (n)dτ

'
∞∑
n=0

2D0

(n+ nmin)
αP

∗
N (n) t= 2Dαt,

(7)

where Dα =
∑∞

n=0
D0

(n+nmin)α
P∗
N(n). This result is consistent with [18] and is verified numer-

ically in figure 2. Furthermore, the non-Gaussian behavior of the motion of polymer CM is
analyzed in [18] by calculating the kurtosis.

4



J. Phys. A: Math. Theor. 57 (2024) 285001 T Zhou et al

Figure 2. Numerical simulation of the MSD of polymer CM position. The result is
obtained by averaging over 105 realizations. In addition, we take α= 0.5, nmin = 3, and
D0 = λ= µ= 1. The squares and solid (red) line, respectively, represent the stochastic
simulation result and theoretical result shown in (7).

In the next section, we will discuss the Fokker–Planck equation in light of the above
research.

3. Derivation of the Fokker–Planck equation

Starting from (1), the ordinary diffusion equation governing only the distribution of the poly-
mer CM position is derived in [18] with the form

∂

∂t
u(r, t) =

D0

(n(t)+ nmin)
α
∂2

∂r2
u(r, t) . (8)

It is closely related to the chain polymerization process n(t). The definition of a functional for
the chain polymerization process n(t) satisfies

A(t) =
ˆ t

0
U(n(τ))dτ, (9)

where U(n) is a given function. In this section, we will derive the Fokker–Planck equation
for the distribution of CM position and chain polymerization process using the Feynman–Kac
equation for the chain polymerization process.

3.1. Forward Fokker–Planck equation

Starting with the definition of A(t), we first derive the forward Feynman–Kac equation of the
chain polymerization process, which governs the joint distribution of the functional A(t) and
the chain polymerization process n(t). The increment δA(t) of A(t) during the small time inter-
val τ satisfies δA(t) = A(t+ τ)−A(t) = U(n(t))τ . Let Q(n,A, t) be the joint PDF of the func-
tional A(t) and the monomer number n(t) in a polymer at time t. According to the theory of the
chain polymerization process, we have

5
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Q(n,A, t+ τ) = µτQ(n+ 1,A−U(n+ 1)τ, t)

+λ(n− 1)τQ(n− 1,A−U(n− 1)τ, t)

+ (1−µτ −λ(n)τ)Q(n,A−U(n)τ, t) ,

(10)

where n> 0. The first term on the right hand side of the above equation states that the number
of monomers in a polymer at time t is n+ 1; during the time interval τ , the polymer dissociates
with probability µτ , resulting in the number of monomers in a polymer at time t+ τ being n.
Correspondingly, the functional at time t is A−U(n+ 1)τ . The second term explains that there
are n− 1 monomers in a polymer and the functional at time t is A−U(n− 1)τ , associated with
the probability λ(n− 1)τ during the time interval τ , which leads to the number of monomers
increasing by 1 and the functional becoming A at time t+ τ . The third term means that during
the time interval τ , the monomer neither dissociates nor associates with probability 1−µτ −
λ(n)τ . The functional at time t is A−U(n)τ . For the case n= 0 at time t+ τ , the number of
monomers in a polymer at time t can only be 1 or 0. Combined with the chain polymerization
process, we obtain

Q(0,A, t+ τ) = µτQ(1,A−U(1)τ, t)+ (1−λ(0)τ)Q(0,A−U(0)τ, t) . (11)

By taking the Fourier transform of A→ p to (10), defined as

Q̃(n,p, t) =
ˆ ∞

−∞
e−i pAQ(n,A, t)dA (12)

and neglecting the higher order term of τ , we have

Q̃(n,p, t+ τ) = µτ Q̃(n+ 1,p, t)+λ(n− 1)τ Q̃(n− 1,p, t)

− (µτ +λ(n)τ − 1) Q̃(n,p, t)− ipU(n)τ Q̃(n,p, t)
(13)

for n> 0. Rearranging the above equation and taking the limit (τ → 0) results to

∂

∂t
Q̃(n,p, t) = µQ̃(n+ 1,p, t)+λ(n− 1) Q̃(n− 1,p, t)

− (µ+λ(n)) Q̃(n,p, t)− ipU(n) Q̃(n,p, t) .
(14)

Applying the same method to (11) yields

∂

∂t
Q̃(0,p, t) = µQ̃(1,p, t)−λ(0) Q̃(0,p, t)− ipU(0) Q̃(0,p, t) . (15)

Define the operator

Lng(n) =


µg(n+ 1)+λ(n− 1)g(n− 1)
− (µ+λ(n))g(n) ,

n> 0,

µg(n+ 1)−λ(n)g(n) , n= 0.
(16)

Then the forward Feynman–Kac equation of the chain polymerization process can be
stated as

∂

∂t
Q̃(n,p, t) = LnQ̃(n,p, t)− ipU(n) Q̃(n,p, t) (17)

6
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for n⩾ 0. The probability distribution PN(n, t|n0) of the chain polymerization process in (2)
can be recovered by taking p= 0.

After taking the inverse Fourier transform p→ A, the forward Feynman–Kac equation in
time-domain behaves as

∂

∂t
Q(n,A, t) = LnQ(n,A, t)−U(n)

∂

∂A
Q(n,A, t) . (18)

In particular, in the above equation, letting U(n) = 2D(n) = 2D0
(n+nmin)α

and A(t) = s(t), there
exists

∂

∂t
Q(n,s, t) = LnQ(n,s, t)− 2D0

(n+ nmin)
α
∂

∂s
Q(n,s, t) . (19)

Next, we present the Fokker–Planck equation, which governs the distribution of the polymer
CM position as well as chain polymerization process. Let u(n,r, t) be the joint PDF of CM
position r(t) and chain polymerization process n(t). According to the property of the composite
process r(t) = B(s(t)), we finally derive the Fokker–Planck equation (see appendix A for the
derivation process)

∂

∂t
u(n,r, t) = Lnu(n,r, t)+

D0

(n+ nmin)
α
∂2

∂r2
u(n,r, t) , (20)

which is called the forward Fokker–Planck equation. There are two reasons why the above
equation is called the forward Fokker–Planck equation. On the one hand, it deals with the
joint distribution of CM position and chain polymerization process. On the other hand, it is
derived by using the forward Feynman–Kac equation of the chain polymerization process.

3.2. Backward Fokker–Planck equation

In this part, we derive the backward Fokker–Planck equation for CM diffusion, which focuses
only on the distribution of the polymer CM position for a given initial number of monomers n0.
The derivation is based on the backward Feynman–Kac equation of the chain polymerization
process n(t). LetQn0(A, t) be the PDF of the functional A(t) at time t for a given n0. For a small
time interval τ , we have

Qn0 (A, t+ τ) = µτQn0−1 (A−U(n0)τ, t)

+λ(n0)τQn0+1 (A−U(n0)τ, t)

+ (1−µτ −λ(n0)τ)Qn0 (A−U(n0)τ, t) ,

(21)

where n0 > 0. That is, the number of monomers in the polymer is n0 at the initial time; after the
time interval τ , the monomer dissociates, associates, or remains unchanged with probability
µτ,λ(n0)τ , or 1−µτ −λ(n0)τ , respectively, so that the number ofmonomers in the polymer is
n0 − 1,n0 + 1, or n0. The functional in the time interval τ isU(n0)τ , so it should be A−U(n0)τ
in the remaining time. When n0 = 0, it holds

Q0 (A, t+ τ) = λ(0)τQ1 (A−U(0)τ, t)+ (1−λ(0)τ)Q0 (A−U(0)τ, t) . (22)

Taking the Fourier transform of (21) with A→ p results in

Q̃n0 (p, t+ τ) = µτ Q̃n0−1 (p, t)+λ(n0)τ Q̃n0+1 (p, t)

− (µτ +λ(n0)τ − 1) Q̃n0 (p, t)− ipU(n0)τ Q̃n0 (p, t) ,
(23)
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which can be rewritten as (for τ → 0)

∂

∂t
Q̃n0 (p, t) = µQ̃n0−1 (p, t)+λ(n0) Q̃n0+1 (p, t)

− (µ+λ(n0)) Q̃n0 (p, t)− ipU(n0) Q̃n0 (p, t) .
(24)

Similarly, for (22), one can get

∂

∂t
Q̃0 (p, t) = λ(0) Q̃1 (p, t)−λ(0) Q̃0 (p, t)− ipU(0) Q̃0 (p, t) . (25)

Define the operator Fn0 as

Fn0g(n0) =


µg(n0 − 1)+λ(n0)g(n0 + 1)
− (µ+λ(n0))g(n0) ,

n0 > 0,

λ(n0)g(n0 + 1)−λ(n0)g(n0) , n0 = 0.
(26)

Then the backward Feynman–Kac equation corresponding to the chain polymerization process
can be expressed as

∂

∂t
Q̃n0 (p, t) = Fn0Q̃n0 (p, t)− ipU(n0) Q̃n0 (p, t) . (27)

Further, the inverse Fourier transform of (27) gives

∂

∂t
Qn0 (A, t) = Fn0Qn0 (A, t)−U(n0)

∂

∂A
Qn0 (A, t) . (28)

In particular, if we choose U(n) = 2D(n) = 2D0
(n+nmin)α

and A(t) = s(t), we have

∂

∂t
Qn0 (s, t) = Fn0Qn0 (s, t)−

2D0

(n0 + nmin)
α
∂

∂s
Qn0 (s, t) . (29)

Let un0(r, t) be the PDF of the CM position r(t) at time t when the initial number of monomers
n0 is given. Since r(t) = B(s(t)), we have

un0 (r, t) =
ˆ ∞

0
G(r,s)Qn0 (s, t)ds. (30)

Taking the derivative of time t and combining with (29) lead to the backward Fokker–Planck
equation governing the position distribution of the polymer CM with a given n0, i.e.

∂

∂t
un0 (r, t) = Fn0un0 (r, t)+

D0

(n0 + nmin)
α
∂2

∂r2
un0 (r, t) . (31)

4. Derivation of the Feynman–Kac equation

In this section, we derive the Feynman–Kac equation of polymer CM diffusion. As in (9), we
define the functional of the polymer CM position as

w(t) =
ˆ t

0
U(r(τ))dτ. (32)

8
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4.1. Forward Feynman–Kac equation

From (1), the increment of the CM position δr(t) during a small time interval τ (τ → 0) is

δr(t) = r(t+ τ)− r(t) =
√
2D(n(t))B(τ) (33)

in the Itô interpretation [68]. The distribution of the noise increment δB(t) is the same as B(τ),
satisfying [69]

〈e−i kB(τ)〉= e−
k2

2 τ . (34)

According to the definition of the functional w(t) in (32), the increment during a small interval
τ is

δw(t) = w(t+ τ)−w(t) = U(r(t))τ. (35)

Define u(n,r,w, t) as the joint PDF of CM position r(t), functional w(t), and chain polymer-
ization process n(t) at time t. We will derive the forward Feynman–Kac equation of polymer
CM diffusion, which governs the distribution of u(n,r,w, t). Taking the Fourier transform to
u(n,r,w, t) with n→ l,r→ k,w→ p, we have

ũ(l,k,p, t) =
∞∑
n=0

e−iln
ˆ ∞

−∞
e−ikrdr

ˆ ∞

−∞
e−ipwdw

×
〈
δn,n(t)δ (r− r(t))δ (w−w(t))

〉
=
〈
e−i ln(t)e−i kr(t)e−i pw(t)

〉
,

(36)

where we have used the definition of discrete Fourier transform since n(t) is a discrete process.
δn,m is the Kronecker delta function, defined as

δn,m =

{
1, n= m,

0, n 6= m.

The increment of the joint PDF in Fourier space is defined as δũ(l,k,p, t) = ũ(l,k,p, t+ τ)−
ũ(l,k,p, t), satisfying

δũ(l,k,p, t) =
〈
e−i ln(t+τ)e−i kr(t+τ)e−i pw(t+τ)

〉
−
〈
e−i ln(t)e−i kr(t)e−i pw(t)

〉
.

(37)

Together with (33) and (35), it can be further written as

δũ(l,k,p, t) =

〈
e−iln(t+τ)e

−ik
(
r(t)+

√
2D(n(t))B(τ)

)
e−ip(w(t)+U(r(t))τ)

〉
−
〈
e−i ln(t)e−i kr(t)e−i pw(t)

〉
.

(38)

9
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According to the theory of chain polymerization process, if n(t+ τ)> 0 we have

δũ(l,k,p, t) = τ
〈
e−i kr(t)e−i k

√
2D(n(t))B(τ)e−i pw(t)e−i pU(r(t))τe−i ln(t)e−i lλ(n(t))

〉
+ τ

〈
e−i kr(t)e−i k

√
2D(n(t))B(τ)e−i pw(t)e−i pU(r(t))τe−i ln(t)ei lµ

〉
+
〈
e−i kr(t)e−i k

√
2D(n(t))B(τ)e−i pw(t)e−i pU(r(t))τe−i ln(t)

〉
− τ

〈
e−i kr(t)e−i k

√
2D(n(t))B(τ)e−i pw(t)e−i pU(r(t))τe−i ln(t) (µ+λ(n(t)))

〉
−
〈
e−i kr(t)e−i pw(t)e−i ln(t)

〉
.

Since B(τ) is independent of the processes r(t) and n(t), combining with its characteristic
function (34) and omitting the higher-order terms of the small time interval τ , we get

δũ(l,k,p, t)≈ τ
〈
λ(n(t))e−i kr(t)e−i pw(t)e−i ln(t)e−i l

〉
+µτ

〈
e−i kr(t)e−i pw(t)e−i ln(t)ei l

〉
− k2τ

〈
D(n(t))e−i kr(t)e−i pw(t)e−i ln(t)

〉
− ipτ

〈
U(r(t))e−i kr(t)e−i pw(t)e−i ln(t)

〉
− τ

〈
(µ+λ(n(t)))e−i kr(t)e−i pw(t)e−i ln(t)

〉
.

Dividing both sides by τ and taking the inverse Fourier transform with l→ n,k→ r, the
forward Feynman–Kac equation of the CM functional is derived for the case n(t+ τ)> 0,
which is

∂

∂t
ũ(n,r,p, t) = λ(n− 1) ũ(n− 1,r,p, t)+µũ(n+ 1,r,p, t)− (µ+λ(n)) ũ(n,r,p, t)

+
D0

(n+ nmin)
α
∂2

∂r2
ũ(n,r,p, t)− ipU(r) ũ(n,r,p, t) .

(39)

When n(t+ τ) = 0, the forward Feynman–Kac equation of the CM position functional can
also be derived in a similar way. Taking the Fourier transform of the joint PDF u(0,r,w, t+ τ)
with r→ k,w→ p, we have

ũ(0,k,p, t+ τ) =
〈
e−ikr(t)e−ik

√
2D(n(t))B(τ)e−i pw(t)e−i pU(r(t))τµτ

〉∣∣∣
n(t)=1

+
〈
e−ikr(t)e−ik

√
2D(n(t))B(τ)e−ipw(t)e−i pU(r(t))τ (1−λ(n(t))τ)

〉∣∣∣
n(t)=0

= µτ
〈
e−ikr(t)e−i pw(t)

〉∣∣∣
n(t)=1

+
〈
e−i kr(t)e−i pw(t)

〉∣∣∣
n(t)=0

− k2τ
〈
e−ikr(t)D(n(t))e−ipw(t)

〉∣∣∣
n(t)=0

− ipτ
〈
U(r(t))e−i kr(t)e−i pw(t)

〉∣∣∣
n(t)=0

− τ
〈
e−ikr(t)e−ipw(t)λ(n(t))

〉∣∣∣
n(t)=0

= µτ ũ(1,k,p, t)− τλ(0)ũ(0,k,p, t)+ ũ(0,k,p, t)

− k2
D0

nαmin

τ ũ(0,k,p, t)− ipτFr→k {U(r)ũ(0,r,p, t)} . (40)

10
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Further, taking the inverse Fourier transform of (40) with k→ r, we get

∂

∂t
ũ(0,r,p, t) = µũ(1,r,p, t)−λ(0) ũ(0,r,p, t)

+
D0

nαmin

∂2

∂r2
ũ(0,r,p, t)− ipU(r) ũ(0,r,p, t) .

(41)

Together with the operator Ln defined in (16), we derive the forward Feynman–Kac equation
for the CM position functional

∂

∂t
ũ(n,r,p, t) = Lnũ(n,r,p, t)+

D0

(n+ nmin)
α
∂2

∂r2
ũ(n,r,p, t)

− ipU(r) ũ(n,r,p, t) .

(42)

In particular, we recover the result of the forward Fokker–Planck equation (20) when taking
p= 0. In this case, ũ(n,r,p= 0, t) =

´∞
−∞ u(n,r,w, t)dw leads to the result of u(n,r, t), the joint

PDF of CM position r(t) and the chain polymerization process n(t). Moreover, if the functional
w is always non-negative, the Fourier transform of w can be replaced by the Laplace transform
defined as û(n,r,p, t) =

´∞
0 e−pwf(n,r,w, t)dw. Finally, the forward Feynman–Kac equation is

obtained by replacing ip with p.

4.2. Backward Feynman–Kac equation

The forward Feynman–Kac equation emphasizes the joint distribution of CM position r(t),
chain polymerization process n(t), and functional w(t). However, in some cases [49, 51], one
pays attention only to the distribution of the functional w(t), which urges us to derive the
backward Feynman–Kac equation for given n0,r0. In this part we aim to derive the backward
Feynman–Kac equation of the CM functional for specific n0,r0.

Starting with (1), it can be noted that the diffusion coefficient depends on the time-
dependent chain polymerization process n(t), which causes the distribution of the CM position
starting from the same position to be different during the same time interval. Therefore, the
whole path r(t) has to be considered. The idea we adopt is to construct a new stochastic pro-
cess to treat this problem. Define r̄(t) = (r(t), I(t))T with the initial distribution r̄(0) = (r0, I0)

T,
where r(t) is the model under consideration and I(t) = t is a process with a deterministic vari-
able. Taking the derivative with respect to time t, we obtain

dr̄(t) =

(
dr(t)
dt

)
=

(√
2D(N((0,1) r̄))dB(t)

dt

)
, (43)

which can be rewritten as

dr̄(t) =

(√
2D(N((0,1) r̄)) 0

0 1

)
·
(
dB(t)
dt

)
. (44)

Now the diffusion coefficient in r̄(t) is independent of time t. We do not necessarily con-
sider the whole path r̄(t)when deriving the backward Feynman–Kac equation of the stochastic
process r̄(t).

11
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Define the functional of r̄(t) as

w̄(t) =
ˆ t

0
U(r̄(τ))dτ =


ˆ t

0
U(r(τ))dτ

ˆ t

0
U(I(τ))dτ

=

(
w(t)

m(t)

)
, (45)

where U is the same as the one in (32). Let Ln0 ,̄r0(w̄, t) be the PDF of the functional w̄(t)
when the initial conditions n0, r̄0 of the stochastic process r̄(t) are given. It can be written as
Ln0 ,̄r0(w,m, t) since w̄(t) = (w(t),m(t))T. Further it can be simplified as Ln0,r0(w,m, t) since
I(t) = t, which is a deterministic process. Let un0,r0(w, t) be the PDF of the functional w(t) of
the polymer CM diffusion process r(t) for given n0,r0. There is no doubt,

un0,r0 (w, t) =
ˆ ∞

−∞
Ln0,r0 (w,m, t)dm

= Fm→p0 {Ln0,r0 (w,m, t)}|p0=0.

(46)

The increment of Ln0,r0(w,m, t) during the small time interval τ is represented as
δLn0,r0(w,m, t); respectively taking Fourier transform of δLn0,r0(w,m, t) with w→ p, m→ p0,
we have

δL̃n0,r0 (p,p0, t) =
〈
e−i pw(t+τ)|n0,r0−i p0m(t+τ)|n0,r0

〉
−
〈
e−i pw(t)|n0,r0−i p0m(t)|n0,r0

〉
,

(47)

where w(t)|n0,r0 is the value of the functional w(t) at time t for given n0,r0. Since un0,r0(w, t) =
L̃n0,r0(w,p0, t)|p0=0, the increment of δun0,r0(w, t) in Fourier-space can be written as

δũn0,r0 (p, t) =
〈
e−i pw(t+τ)|n0,r0

〉
−
〈
e−i pw(t)|n0,r0

〉
. (48)

We explore the relationship between the functionalw(t) and the initial value of the stochastic
process r(t). By the definition of the functional w(t) in (32), we have

w(t+ τ) = U(r0)τ +w(t) |n(τ),r(τ). (49)

In addition, according to the Langevin equation (1), r(τ) = r0 +
√
2D(n0)B(τ) holds under

the Itô interpretation during a small time interval τ . Substituting the above results into (48),
we have

δũn0,r0 (p, t) =

〈〈〈
e−i pU(r0)τe

−i pw(t)|
n(τ),r0+

√
2D(n0)B(τ)

〉〉〉
−
〈
e−i pw(t)|n0,r0

〉
,

(50)

where the inner brackets of 〈〈〈 · 〉〉〉 denote the average of w(t), while the outer two brack-
ets denote the average of the Wiener process B(τ) and the chain polymerization process n(t),

12
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respectively. According to the dynamics of monomer aggregation and disaggregation, one
can get

δũn0,r0 (p, t) =

〈〈
µτe−i pU(r0)τe

−i pw(t)|
n0−1,r0+

√
2D(n0)B(τ)

〉〉
+

〈〈
λ(n0)τe

−i pU(r0)τe
−i pw(t)|

n0+1,r0+
√

2D(n0)B(τ)

〉〉
+

〈〈
(1−µτ −λ(n0)τ)e

−ipU(r0)τe
−ipw(t)|

n0,r0+
√

2D(n0)B(τ)

〉〉
−
〈
e−i pw(t)|n0,r0

〉
(51)

for n0 > 0. Taking the Fourier transform of δũn0,r0(p, t) with r0 → k0 and dropping the higher-
order terms of τ , one can get

δũn0,k0 (p, t) = µτ ũn0−1,k0 (p, t)+λ(n0)τ ũn0+1,k0 (p, t)

− (µ+λ(n0))τ ũn0,k0 (p, t)− k20D(n0)τ ũn0,k0 (p, t)

− ipτFr0→k0 {U(r0) ũn0,r0 (p, t)} .
(52)

The details are given in appendix B. Taking the inverse Fourier transform of (52) with k0 → r0,
we finally obtain

∂

∂t
ũn0,r0 (p, t) = µũn0−1,r0 (p, t)+λ(n0) ũn0+1,r0 (p, t)

− (µ+λ(n0)) ũn0,r0 (p, t)− ipU(r0) ũn0,r0 (p, t)

+
D0

(n0 + nmin)
α
∂2

∂r20
ũn0,r0 (p, t) .

(53)

When n0 = 0, according to the behavior of monomer aggregation and disaggregation, the
increment of δũ0,r0(p, t) can be expressed as

δũ0,r0 (p, t) =
〈〈
λ(0)τe−i pU(r0)τe

−i pw(t)|
1,r0+

√
2D(0)B(τ)

〉〉
+
〈〈
e−i pU(r0)τe

−i pw(t)|
0,r0+

√
2D(0)B(τ)

〉〉
−
〈〈
λ(0)τe−i pU(r0)τe

−i pw(t)|
0,r0+

√
2D(0)B(τ)

〉〉
−
〈
e−i pw(t)|0,r0

〉
.

(54)

Following the above procedure, there exists

∂

∂t
ũ0,r0 (p, t) = λ(0) ũ1,r0 (p, t)−λ(0) ũ0,r0 (p, t)

− ipU(r0) ũ0,r0 (p, t)+
D0

nαmin

∂2

∂r20
ũ0,r0 (p, t) .

(55)
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Together with the operator Fn0 defined in (26), the backward Feynman–Kac equation of the
CM functional is derived as

∂

∂t
ũn0,r0 (p, t) = Fn0 ũn0,r0 (p, t)− ipU(r0) ũn0,r0 (p, t)

+
D0

(n0 + nmin)
α
∂2

∂r20
ũn0,r0 (p, t) .

(56)

In the following, we will solve the Feynman–Kac equation by the deep learning method
[70] and use Monte Carlo simulation to simulate the corresponding stochastic process, the
comparison of which verifies the effectiveness of the derived equation.

5. Deep BSDE method

Deep BSDEmethod is a deep learningmethod for solving high-dimensional partial differential
equations (PDEs), which was proposed in [71]. In the work [70], we derive a discrete version
of BSDE and generalize the deep BSDE method to solve equations with discrete operators. In
this section, we briefly introduce the main ideas of the deep BSDE method.

5.1. PDEs and BSDEs

We consider a class of semilinear parabolic PDEs with infinite dimensional coupling. These
PDEs can be represented as

∂

∂t
u(n,r,p, t)+ Tnu(n,r,p, t)+

D0

(n+ nmin)
α
∂2

∂r2
u(n,r,p, t)+ f(n,r,p,u(n,r,p, t)) = 0 (57)

with the given terminal condition u(n,r,p,T) = g(n,r,p). Here the unknown is u : N×R1 ×
R1 × [0,∞)→ C,

Tn f(n) =

{
α(n)( f(n+ 1)− f(n))+β (n)( f(n− 1)− f(n)) , n⩾ 1,

α(n)( f(1)− f(0)) , n= 0,
(58)

where α(n) and β(n) are known functions that satisfy α(n),β(n)⩾ 0 for n ∈ N, and β(0) = 0.
It is easy to see that the equations (42) and (56) can both be transformed into the form of the
equation (57).

Let n(t) be a birth-death process satisfying

P(n(t+ τ)− n(t) = k|n(t) = n) =


α(n)τ + o(τ) , k= 1,

β (n)τ + o(τ) , k=−1,

1− (α(n)+β (n))τ + o(τ) , k= 0,

o(τ) , otherwise,

(59)

and r(t) be a one-dimensional stochastic process satisfying

r(t) = r(0)+
ˆ t

0

√
2D0

(n(τ)+ nmin)
α dB(τ) . (60)
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Let u(n,r,p, t) be the solution of the equation (57). Then u(n(t),r(t),p, t) satisfies the
BSDE [70]

u(n(t) ,r(t) ,p, t)− g(n(t) ,r(t) ,p)

=

ˆ T

t
f(n(τ) ,r(τ) ,p,u(n(τ) ,r(τ) ,p, τ))dτ

−
ˆ T

t

√
2D0

(n(τ)+ nmin)
α
∂

∂r
u(n(τ) ,r(τ) ,p, τ)dB(τ)

−
ˆ T

t

ˆ
Z\{0}

u(n(τ−)+ n,r(τ) ,p, τ)− u(n(τ−) ,r(τ) ,p, τ) J̃(dτ,dn;n(τ−)).

(61)

5.2. Deep BSDE method

Now, we can get the solution of the corresponding original equations by solving (60) and (61).
We focus on the solution u(n0,r0,p,0), where (n0,r0,p) ∈ N×R1 ×R1 is already determ-
ined. We treat u(n0,r0,p,0)≈ θϕ as a parameter in the model and consider BSDE (61) as
the way to get the value of u at the terminal time T when u(n(0) = n0,r(0) = r0,p,0) and
∂
∂ru(n(t),r(t),p, t) and u(n(t−)± 1,r(t),p, t) are known, where ∂

∂ru(n,r,p, t) is approximated
by a neural network

∂

∂r
u(n,r,p, t)≈ ψ1 (n,r,p, t|θψ1) (62)

with parameters θψ1 and δ±n u(n,r, t) = [u(n− 1,r, t)− u(n,r, t),u(n+ 1,r, t)− u(n,r, t)]T is
approximated by a neural network

δ±n u(n,r,p, t)≈ ψ2 (n,r,p, t|θψ2) (63)

with parameters θψ2 .
On this basis, one can design the numerical schemes by discretizing time. Given a parti-

tion of the time interval [0, t] : 0= t0 < t1 < · · ·< tN−1 < tN = T, we consider the simple Euler
scheme for k= 0,1, . . . ,N− 1.

r(tk+1)− r(tk) =

√
2D0

n(tk)+ nmin
∆B(tk) (64)

and

u(n(tk+1) ,r(tk+1) ,p, tk+1) = u(n(tk) ,r(tk) ,p, tk)− f(n(tk) ,r(tk) ,p,u(n(tk) ,r(tk) ,p, tk))∆tk

+

√
2D0

(n(tk)+ nmin)
α

∂

∂r
u(n(tk) ,r(tk) ,p, tk)∆B(tk)

+ u(n(tk+1) ,r(tk) ,p, tk)− u(n(tk) ,r(tk) ,p, tk)−Fnu(n(tk),r(tk),p, tk),
(65)

where ∆tk = tk+1 − tk, ∆B(tk) = B(tk+1)−B(tk), and n(tk+1)− n(tk) satisfies (59).
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We take the discretized time {tk}0⩽k⩽N, frequency p, the randomly generated paths
{n(tk)}0⩽k⩽N, {r(tk)}0⩽k⩽N, and {B(tk)}0⩽k⩽N as the input data of the neural network. Let
θ = {θϕ,θψ1 ,θψ2}, the final output û({n(tk),r(tk),p,B(tk), tk}0⩽k⩽N|θ) is obtained through the
scheme (65) as an approximation of g(n(T),r(T),p). The difference from the given terminal
conditions can be used to construct the loss function

Loss(θ) = E
[∣∣∣g(n(T) ,r(T) ,p)− û

(
{r(tk) ,p,n(tk) ,B(tk) , tk}0⩽k⩽N |θ

)∣∣∣2] . (66)

6. Applications

In this section, we give some applications of the derived Feynman–Kac equations and solve
them using the deep BSDE method and Monte Carlo simulation. To proceed, the original
problem must first be transformed into a terminal problem by time transformation t→ T− t.
All numerical examples are run on a desktop computer with a 3.40GHz Intel Core i7 processor
and 32 GB memory.

6.1. Occupation time in the positive half-space

We first discuss the occupation time of the polymer CM position in r> 0 space. This applica-
tion has been discussed for Brownian motion and non-Brownian case [51] from the backward
Feynman–Kac equation. The functional corresponding to this application satisfies

w(t) =
ˆ t

0
Θ(r(τ))dτ, (67)

where Θ(r) = 1 for r> 0 and zero otherwise. To find the distribution of occupation times, we
consider the backward Feynman–Kac equation

∂

∂t
ũn0,r0 (p, t)+Fn0 ũn0,r0 (p, t)+

D0

(n0 + nmin)
α
∂2

∂r20
ũn0,r0 (p, t)− ipΘ(r0) ũn0,r0 (p, t) =0 (68)

with terminal condition ũn0,r0(p,T) = 1. We calculate the occupation time distribution of the
polymer CM on the positive half-space by solving the backward Feynman–Kac equation (68)
using the deep BSDE method and Monte Carlo simulation, respectively.

Choosing D0 = 10, nmin = 3, α= 1, n0 = 0, r0 = 0, T= 3, λ(i) = 1, and µ= 1, we get the
results of two methods (figure 3). In the simulation by the deep BSDEmethod, p ∈ [−40,40] is
divided into 20 parts, and 20 models are trained in parallel, each model going through 40000
iterations of 256 batch size at 150 equidistant time steps (N= 150), with a learning rate of
0.001 for the first 20000 and 0.0001 for the last 20000 iterations. Then the solution in physical
space is obtained by inverse Fourier transform. The ‘exact solution’ is obtained by simulating
1000000 particle trajectories using Monte Carlo simulation, and then numerically comput-
ing the probability density of the particle trajectory functional at [0,3]. The L2 relative error
between the solution obtained by the deep BSDE method and the solution obtained by the
Monte Carlo simulation reaches 0.0002171. The results show that the solution obtained by
solving equation (68) is consistent with the solution obtained by Monte Carlo simulation.
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Figure 3. Plots of the probability density of occupation time of positive half-space of
polymer CM at n0 = 0, r0 = 0, t= 0 (According to the time transformation t→ T− t,
the physical time is 3), and w ∈ [0,3], which are obtained by deep BSDE method and
Monte Carlo simulation, respectively. The stars represent the ‘exact solution’ obtained
by Monte Carlo simulation and the solid (blue) line is for the solution obtained by solv-
ing equation (68) using deep BSDE method and making inverse Fourier transform in
three different frequency ranges [−4,4], [−20,20], and [−40,40].

6.2. First passage time

In this subsection, we discuss the time that the polymer CMfirstly passes through the boundary
∂Ω. Assuming that the polymer CMmoves freely in the domainΩ= [−L,L], the time at which
the polymer CM firstly reaches the boundary ±L is called the first-passage time. The first-
passage time is a direct application of the backward Feynman–Kac equation and the functional
corresponding to this application is

w(t) =
ˆ t

0
ΘΩ (r(τ))dτ, (69)

where ΘΩ(r) = 1 for r ∈ Ω and zero otherwise.
To obtain the distribution of the first-passage time by solving the backward Feynman–Kac

equation, we apply the absorption boundary condition un0,r0∈∂Ω(w, t) = δ(w) to the original
equation, so consider the terminal boundary value problem

∂

∂t
ũn0,r0 (p, t)+Fn0 ũn0,r0 (p, t)

+
D0

(n0 + nmin)
α
∂2

∂r20
ũn0,r0 (p, t)− ipΘΩ (r0) ũn0,r0 (p, t) = 0

(70)

with terminal boundary conditions ũn0,r0(p,T) = 1 and ũn0,r0∈∂Ω(p, t) = 1. It can be seen from
the equation that we are actually calculating the distribution of survival time, so the distribution
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Figure 4. Plots of the probability density of first passage time of polymer CM at n0 = 5,
r0 = 0, t= 0 (According to the time transformation t→ T− t, the physical time is 10),
and w ∈ [0,10], which are obtained by deep BSDEmethod andMonte Carlo simulation,
respectively. The stars represent the ‘exact solution’ obtained by Monte Carlo simula-
tion, and the solid (blue) line is for the solution obtained by solving equation (70) using
deep BSDE method and making inverse Fourier transform.

of first passage time ϕ(w) = lim
t→∞

un0,r0(w, t)
3 (Here un0,r0(w, t) is the original one, i.e. no time

transformation t→ T− t, where the same notation is used). By solving equation (70) with the
deep BSDEmethod andMonte Carlo simulation, we obtain the distribution of the first passage
time of polymer CM in one-dimensional case.

Choosing D0 = 10,nmin = 3,α= 1,n0 = 5,r0 = 0,T= 10,λ(i) = 1, and µ= 1, L= 2, we
get the results of the two methods (figure 4). The BSDE solved by the deep BSDE method
also has the boundary condition ũn(t),r(t)(p, t) = 1 for r(t) ∈ ∂Ω. Stop the iteration when r(t)
reaches the boundary, and calculate the boundary loss values. We divide p ∈ [−10,10] into
five parts on average, and train five deep BSDE models in parallel, each model going through
40000 iterations of 256 batch size at 500 equidistant time steps (N= 500), with learning rate
of 0.001 for the first 20000 and 0.0001 for the last 20000 iterations. Finally, the solution in
physical space is obtained by inverse Fourier transform. The ‘exact solution’ is obtained by
simulating 1000000 particle trajectories usingMonte Carlo simulation and then to numerically
calculate the probability density of the particle trajectory functional at [0,10]. The L2 relative
error between the solution obtained by the deep BSDE method and the solution obtained by
the Monte Carlo simulation reaches 0.0001277. The results show that the solution obtained
by solving equation (70) is consistent with the solution obtained by Monte Carlo simulation.

3 When t→+∞, the value of w defined by equation (69) is exactly the time spent of the particle firstly reaching the
boundary. So, the solution of the equation is equal to the distribution of the first passage time when the physical time
is large enough.
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6.3. Joint distribution of position integral functional

In this subsection, we discuss the joint probability distribution of the size, position, and position
integral functional for polymer CM. The functional corresponding to this application satisfies

w(t) =
ˆ t

0
r(τ)dτ. (71)

Considering the forward Feynman–Kac equation

∂

∂t
ũ(n,r,p, t)+ Lnũ(n,r,p, t)+

D0

(n+ nmin)
α
∂2

∂r2
ũ(n,r,p, t)− iprũ(n,r,p, t) = 0,

(72)

with terminal condition ũ(n,r,p,T) = g(n,r,p), we obtain the joint probability distribution
by solving the forward Feynman–Kac equation (72) with the deep BSDE method and Monte
Carlo simulation, respectively.

Choosing D0 = 1,nmin = 3,α= 1,n= 5,r= 0,T= 1,λ(i) = (50− i)/10, µ= 2, and the
terminal condition4

g(n,r,p) =
κ{0,...,9} (n)

10(2π)
1
2

e−
|r|2
2 , (73)

we get the results of the two methods (figure 5). The results of the deep BSDE method go
through 40000 iterations of 512 batch size at 50 equidistant time steps (N= 50), with learning
rate of 0.0005 for the first 20000 and 0.0001 for the last 20000 iterations. The final results can
then be obtained by the inverse Fourier transform. The L2 relative error between the solution
obtained by the deep BSDE method and the solution obtained by the Monte Carlo simulation
reaches 0.00000024. The results show that the solution obtained by solving equation (72) is
consistent with the solution obtained by Monte Carlo simulation.

7. Conclusion

We derive the Fokker–Planck equation and the Feynman–Kac equation for the dynamics of
polymer CMdiffusion which is described by the Langevin equation with Gaussian white noise.
The diffusion coefficient corresponding to this model is a stochastic process called the chain
polymerization process. The Fokker–Planck equation is derived with the help of the Feynman–
Kac equation of chain polymerization process, termed as forward Fokker–Planck equation
and backward Fokker–Planck equation, respectively. The forward Fokker–Planck equation
governs the joint PDF of CM position and chain polymerization process while the backward
Fokker–Planck equation only concerns the distribution of CM position for a given n0.

By defining a functional of the CM path, we derive the forward Feynman–Kac equation
governing the joint PDF of the CM position, the functional, and the chain polymerization

4 The joint probability density g(n, r,w) =
⟨
δn,n(0)δ(r− r(0))δ(w−w(0))

⟩
of n(0), r(0), and w(0) after the Fourier

transform w→ p. We assume that r(0) satisfies the normal distribution and n(0) satisfies the uniform distribution of
{0,1, . . . ,9}, and that n(0) and r(0) are independent.
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Figure 5. Plots of joint probability distribution of the size, position, and position integ-
ral functional for polymer CM at n= 5, r= 0, t= 0 (physical time is t= T= 1), and
w ∈ [−1,1], which are obtained by deep BSDE method and Monte Carlo simulation
respectively. Stars represent the ‘exact solution’ of Monte Carlo simulations while the
solid (blue) line denotes the solution of (72) obtained by deep BSDE method.

process. The backward Feynman–Kac equation is also derived for given n0,r0. Finally, we
solve the Feynman–Kac equation using the deep BSDE method and Monte Carlo simulation
through several classical application problems, respectively.
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Appendix A. Derivation of (20)

Since r(t) = B(s(t)), it holds that [72]

u(n,r, t) =
ˆ ∞

0
G(r,s)Q(n,s, t)ds. (A.1)
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Taking the derivative of time t on both sides of the above equation and combining with (19)
result in

∂

∂t
u(n,r, t) =

ˆ ∞

0
G(r,s)

∂

∂t
Q(n,s, t)ds

=

ˆ ∞

0
G(r,s)

(
LnQ(n,s, t)− 2D0

(n+ nmin)
α
∂

∂s
Q(n,s, t)

)
ds

= Lnu(n,r, t)−
2D0

(n+ nmin)
α

ˆ ∞

0
G(r,s)

∂

∂s
Q(n,s, t)ds

= Lnu(n,r, t)+
2D0

(n+ nmin)
α

ˆ ∞

0
Q(n,s, t)

∂

∂s
G(r,s)ds

= Lnu(n,r, t)+
2D0

(n+ nmin)
α

ˆ ∞

0
Q(n,s, t)

1
2
∂2

∂r2
G(r,s)ds

= Lnu(n,r, t)+
D0

(n+ nmin)
α
∂2

∂r2
u(n,r, t) .

(A.2)

Appendix B. Derivation process of (52)

Equation (51) can be further expanded as

δũn0,r0 (p, t) =

〈〈
µτe−i pU(r0)τe

−i pw(t)|
n0−1,r0+

√
2D(n0)B(τ)

〉〉
+

〈〈
λ(n0)τe

−i pU(r0)τe
−i pw(t)|

n0+1,r0+
√

2D(n0)B(τ)

〉〉
+

〈〈
e−i pU(r0)τe

−i pw(t)|
n0,r0+

√
2D(n0)B(τ)

〉〉
−
〈〈

(µ+λ(n0))τe
−i pU(r0)τe

−i pw(t)|
n0,r0+

√
2D(n0)B(τ)

〉〉
−
〈
e−i pw(t)|n0,r0

〉
.

(B.1)

According to the definition of Fourier transform with r0 → k0, (B.1) becomes

δũn0,k0 (p, t) = Fr0→k0

{〈〈
µτe−i pU(r0)τei k0

√
2D(n0)B(τ)e−i pw(t)|n0−1,r0

〉〉}
+Fr0→k0

{〈〈
λ(n0)τe

−ipU(r0)τeik0
√

2D(n0)B(τ)e−ipw(t)|n0+1,r0

〉〉}
+Fr0→k0

{〈〈
e−i pU(r0)τei k0

√
2D(n0)B(τ)e−i pw(t)|n0,r0

〉〉}
−Fr0→k0

{〈〈
(µ+λ(n0))τe

−i pU(r0)τei k0
√

2D(n0)B(τ)e−i pw(t)|n0,r0
〉〉}

−
〈
e−i pw(t)|n0,k0

〉
(B.2)
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for τ → 0. Since the functional w(t) is independent with B(τ), it can be written as

δũn0,k0 (p, t) = Fr0→k0

{〈
µτe−i pU(r0)τe−k20D(n0)τe−i pw(t)|n0−1,r0

〉}
+Fr0→k0

{〈
λ(n0)τe

−i pU(r0)τe−k20D(n0)τe−i pw(t)|n0+1,r0

〉}
+Fr0→k0

{〈
e−i pU(r0)τe−k20D(n0)τe−i pw(t)|n0,r0

〉}
−Fr0→k0

{〈
(µ+λ(n0))τe

−i pU(r0)τe−k20D(n0)τe−i pw(t)|n0,r0
〉}

−
〈
e−i pw(t)|n0,k0

〉
.

(B.3)

By ignoring the higher-order terms of small time interval τ , it can be further simplified as

δũn0,k0 (p, t) =
〈
µτe−i pw(t)|n0−1,k0

〉
+
〈
λ(n0)τe

−i pw(t)|n0+1,k0

〉
−
〈
(µ+λ(n0))τe

−i pw(t)|n0,k0
〉
− k20

〈
D(n0)τe

−i pw(t)|n0,k0
〉

− ipτFr0→k0

{〈
U(r0)e

−i pw(t)|n0,r0
〉}

,

(B.4)

which is equivalent to (52) in Fourier space.
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