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In nature, essentially almost all the particles move irregularly in non-static media. With the advance of observation
techniques, various kinds of new dynamical phenomena are detected, e.g., Brownian non-Gaussian diffusion. This
paper focuses on the dynamical behavior of the center of mass (CM) of polymer in non-static media and investigates
the effect of polymer size fluctuations on the diffusion behavior. Firstly, we establish a diffusing diffusivity model for
polymer size fluctuations, linking the polymer size variation to the birth and death process, and introduce co-moving and
physical coordinate systems to characterize the position of the CM for polymer in non-static media. Next, the important
statistical quantities for the CM diffusing diffusivity model in non-static media, such as mean square displacement
(MSD) and kurtosis, are obtained by adopting the subordinate process approach, and the long-time asymptotic behavior
of the MSD in the media of different types is specifically analyzed. Finally, the bivariate Fokker-Planck equation and
the Feynman-Kac equation corresponding to the diffusing diffusivity model are detailedly derived and solved through
the deep BSDE method to confirm the correctness of the derived equations.

In a non-static media, the medium itself is in a state of mo-
tion, thereby affecting the movement of particles. When
the motion mode of the particle is random walk, through
the change of volume in the non-static medium and
in combination with the classical Chapman-Kolmogorov
equation1–3, the corresponding diffusion equation and the
Langevin equation4 can be derived to describe the diffu-
sion behavior of particles in different media. In order to
investigate the particle motion in the non-static medium,
it is necessary for us to introduce the comoving coordi-
nate system. By establishing the relationship between the
comoving coordinate system and the physical coordinate
system5–8, the tools for researching the random model in
the static medium can be employed to explore the diffu-
sion behavior of the particles in the non-static medium. As
for the diffusion behavior of Brownian non-Gaussian9–11,
which is experimentally discovered, it has been found that
the generalized grey Brownian motion12 and the diffus-
ing diffusivity model13 are adopted to study it. In recent
years, Brownian non-Gaussian diffusion phenomena have
been frequently observed in biological systems14,15. The
present paper focuses on the non-Gaussian diffusion be-
haviour of the polymer CM in the non-static state, where
the movement of CM is not only affected by the motion
of the medium, but also by the Brownian motion of the
polymer as a whole and the fluctuation on the number of
polymer monomers.

I. INTRODUCTION

The majority of previous diffusion processes have been an-
alyzed in static media, i.e., when the particle is not in motion,
the position of the particle does not change with time. How-
ever, in nature, the phenomena occurring in non-static homo-
geneous media are exceedingly ubiquitous. In cosmology16,
cosmic rays diffuse in an expanding universe, where the ra-

diation and matter-dominated expansion is represented by
a power law scaling factor17, whereas the expansion con-
trolled by dark energy is determined by an exponential scal-
ing factor17,18. In developmental biology19–22, the formation
of biological structures is impacted by the tissues and organs
that accompany the growth process. The non-static medium
itself is in motion, implicating the movement of the particle.
Continuous-time random walks6 (CTRW) and Lévy walks7,8

with coupled time and space and finite velocity are central
stochastic models for describing non-static diffusion mecha-
nisms. Alternatively, the anomalous diffusion of the particle
in a non-static medium is explored within the framework of
Langevin’s equation23.

Numerous different complex and irregular systems are gen-
erally accompanied by a variety of diffusion phenomena. To
be specific, this diffusion is manifested in the MSD of the
motion of the particle, i.e.,

〈
x2(t)

〉
=
∫

∞

−∞
x2P(x, t)dx exhibit-

s various relations
〈
x2(t)

〉
∼ ta. As a general rule, a > 1

and 0 < a < 1 respectively correspond to 2 types of diffu-
sion, i.e., superdiffusion and subdiffusion. With regard to
anomalous diffusion, the models that we typically utilize to
investigate are: the generalized Langevin equation with power
law or exponential memory kernel24, the fractional Brownian
motion25 (FBM), the CTRW model26–28, α-stable subordina-
tion process29, and the Lévy walk model30, etc. For the case
of
〈
x2(t)

〉
∼ t, previously it was viewed as a normal Brownian

Gaussian diffusion31–33.
Extensive exploration and experiments on natural phenom-

ena have led to the discovery of a new kind of diffusion phe-
nomenon. This phenomenon manifests itself as a linear rela-
tionship for the MSD of the particle with respect to time, anal-
ogous to normal Brownian diffusion, yet the particle’s prob-
ability density function (PDF) is not Gaussian distribution.
The Granick group initially employs single-particle tracking
experiments, involving colloidal particle motion on a phos-
pholipid bilayer10 and entanglement in the F-actin network9,
both of which reveal this new diffusion phenomenon. Sub-
sequently this phenomenon has been called Brownian non-
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Gaussian diffusion11 and has been observed in a variety of
systems. Predominantly, it is seen in physical and biolog-
ical systems, such as the random motion of tracer particles
in polymer suspensions14,15, the diffusion of nanoparticles in
nanopillar arrays39, the individual dynamic behavior in het-
erogeneous populations of parasitic nematodes40, and the d-
iffusion of RNA molecules in living E. coli and yeast cells34.
At a microscopic level, identifying potential mechanisms can
help explain experimental phenomena. The literature41 pro-
poses polymerisation and depolymerisation of monomers in
polymers, providing a basis for studying this anomalous dif-
fusion. The literatures42,43consider polymers in contact with a
chemostatted monomer bath. By changing the monomer con-
centration in the monomer bath, polymers change from finite
growth to infinite growth (the size fluctuations of polymers are
characterized by a “birth and death process”), explaining the
return of the polymer CM from initial Brownian non-Gaussian
diffusion to normal diffusion. To fill this gap in such diffusion
in non-static media, we generalize the diffusion model to non-
static media.

Numerous experiments involve the analysis of trajectories
of tagged particles with distinct non-Gaussian diffusion ori-
gins. Two main strategies of studying non-Gaussian diffusion
due to random diffusion coefficients are the generalized grey
Brownian motion (ggBM) and the diffusing diffusivity (DD)
model. The first ggBM is defined by the stochastic equation12

x(t) =
√

2DB(t), (1)

in which x(t) denotes the particle trajectory, and B(t) =∫ t
0 ξ (t)dt is the standard Wiener process (Brownian motion).

The diffusion coefficient D is a random variable independen-
t of time and comes from the distribution p(D). The diffu-
sion of particles with random diffusion coefficients in the g-
gBM model within steady and complex environments is con-
cordant with the diffusion examined by the superstatistical
approach13. The second stochastic model is the DD model,
as defined by the overdamped Langevin equation13

dx(t)
dt

=
√

2D(t)ξ (t). (2)

In this model, the diffusion coefficient D(t) is a time depen-
dent random variable or stochastic process. The evolution of
the motion of the particle undergoes both the temporal conti-
nuity of its own diffusion coefficient and the overall random-
ness of Brownian motion in the DD model. While the DD
model is consistent with the results of the superstatistical ap-
proach for short time (less than D(t) autocorrelation time),
beyond a characteristic time scale (greater than D(t) autocor-
relation time) the evolution trend of the particles gradually
turns from non-Gaussian to Gaussian diffusion. More mod-
els include exponentially distributed FBM, random diffusivity
for scaled Brownian motion, diffusing diffusivity FBM, and
Brownian motion in quenched disordered landscapes34–38.

In this paper, we investigate a broader DD process that
probes the diffusion behavior of the CM of polymer in a non-
static media. In this process, the diffusion coefficient D(t) is
a “birth and death process” related to the number of polymer

monomers, and D(t) is subordinated to Brownian motion as a
stochastic process. In Section II, we introduce the stochastic
process N(t) with respect to the number of polymer monomer-
s and calculate the steady-state distribution of the stochastic
process N(t). In Section III, the DD model in a non-static
media is presented to discuss the kinetic behavior of the CM
of polymer. Statistical quantities related to the position of the
CM are individually obtained and simulated in different type-
s of media. We derive the bivariate Fokker-Planck equation
for the PDF of the CM in Section IV and get the correspond-
ing Feynman-Kac equation of the DD model. In Section V,
we solve the equations derived in Section IV using the deep
BSDE method and validate it (also the correctness of the equa-
tion) by simulations with the Monte Carlo method. Important
results are summarized and discussed in the last section.

II. POLYMERIZATION AND DEPOLYMERIZATION
PROCESS

Polymers are high-molecular compounds formed by the
linkage of monomers through reaction mechanisms like poly-
condensation or ring-opening polymerization, resulting in
polymer chains. The molecular weight of polymers is gen-
erally quite high and can reach thousands or even millions of
molecules. Polymer molecules can bond with other to form a
mesh structure, which endows the material with special prop-
erties such as elasticity and toughness. As such, polymers
have a broad range of applications, notably in the arenas of
plastics, rubber, coatings, fibers, and electronic devices.

Suppose that a polymer AN consists of N monomers A1 in
an environment with infinite monomers. The increase (poly-
merization) and decrease (depolymerization) of monomers at
both ends of the polymer AN is hereby depicted by the chem-
ical reaction44

AN−1 +A1
λ



µ

AN , (3)

in which λ and µ are the polymerization and depolymeriza-
tion rates, respectively, and neither λ nor µ is dependent on
the number of polymer monomers. Likewise, the description
of this chemical reaction process can be achieved through the
M/M/1/∞ model in queueing theory. Here, the first M and
the second M respectively represent the Markov arrival time
and the Markov service completion time, both following the
exponential distribution. The 1 indicates only a single ser-
vice desk, while ∞ signifies an unlimited number of customer-
s. Corresponding to the above chemical reaction (3), a linear
polymer AN , with polymerization and depolymerization rates
obeying exponential distributions respectively with parame-
ters λ and µ , reacts in a monomer infinite environment.

This chemical reaction can be considered as a Markov pro-
cess {N(t), t > 0}, in which N(t) represents the number of
monomers of polymer at t. From the chemical reaction (3),
it is obvious that there is a fluctuation in the number of poly-
mer monomers, where AN occurs between neighboring states.
Therefore, N(t) can be treated as a birth and death process,
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taking the polymerization and depolymerization processes as
“birth” and “death”.

The alteration in the number of polymer monomers is pre-
sented for short τ durations, and the probabilities of monomer
polymerization and depolymerization within the (t, t+τ) time
period are shown in Table I. The probabilities of monomer
polymerization and depolymerization in a brief τ time pe-
riod are

∫
τ

0 λe−λ t ′dt ′ and
∫

τ

0 µe−µt ′dt ′, respectively. As the
amount of monomers varies between adjacent states, there are
three cases for the number of polymer monomers at t time,
i.e., n− 1, n, and n+ 1. Hence, the probability that the poly-
mer has n monomers at the time t + τ can be represented as
four mutually exclusive cases. In accordance with the ful-
l probability formula, at the initial moment t = 0 and n = n0,
PN(n, t + τ|n0) can be represented as

PN(n, t + τ|n0)

=PN(n+1, t|n0)[(1−λτ +o(τ))(µτ +o(τ))]
+PN(n−1, t|n0)[(λτ +o(τ))(1−µτ +o(τ))]
+PN(n, t|n0)[(1−λτ +o(τ))(1−µτ +o(τ))
+(λτ +o(τ))(µτ +o(τ))]+o(τ).

(4)

After collecting like terms in (4) and dividing by τ , as τ →
0, omitting the higher-order terms, (4) can be written as the
forward Kolmogorov equation

∂

∂ t
PN (n, t | n0) =µPN (n+1, t | n0)− (µ +λ )PN (n, t | n0)

+λPN (n−1, t | n0) n≥ 1,
∂

∂ t
PN (0, t | n0) =µPN (1, t | n0)−λPN (0, t | n0) .

(5)
Beside that, it is essential to obtain the steady-state distribu-
tion of this process P∗(n) = limt→∞ PN(n, t | n0); the existence
of P∗(n) requires that the birth process is ergodic45, i.e., it
satisfies the requirement

∞

∑
i=1

i

∏
n=1

µn

λn
= ∞

and

∞

∑
i=1

i

∏
n=1

λn−1

µn
< ∞.

In the context of the birth and death process discussed, the
polymerization rate λ and the dissociation rate µ have no de-
pendence on the number of monomers. The process features a
steady-state distribution P∗(n) given that λ < µ , and it can be
obtained by setting equation (5) with ∂tPN (n, t | n0) = 0, i.e.,
to solve

0 =λP∗(n−1)− (µ +λ )P∗(n)+µP∗(n+1) n≥ 1,
0 =µP∗(1)−λP∗(0).

(6)

By means of recursion, it can be got that ∑
∞
n=0 P∗(n) =

∑
∞
n=0

(
λ

µ

)n
P∗(0) = 1, so the steady-state distribution is

P∗(n) =
(

1− λ

µ

)(
λ

µ

)n
. P∗(n) is also available through the

specific distribution as t → ∞ obtained from the literature46.
Based on the autocorrelation time scale43 η of the stochastic
process N(t), the asymptotic approximation of PN (n, t | n0) is
categorized into two scenarios in the subsequent study, specif-
ically, taking t � η and t � η , which are asymptotic to
PN (n, t | n0)∼ δn,n0 and PN (n, t ′ | n0)∼ P∗(n).

III. DD MODEL IN NON-STATIC MEDIA

Taking into account the position for the CM of polymer in
three dimensions, it is customary to represent the position in
static and non-static media separately using co-moving coor-
dinate and physical coordinate4, as detailed below,

r̄ = a(t)r, (7)

whereby r̄ = (x̄, ȳ, z̄) is the physical coordinate, r = (x,y,z)
is the co-moving coordinate, and a(t) is the scale factor with
a(0) = 1.

We first consider Brownian motion in non-static media, and
there are two ways to obtain its corresponding Langevin equa-
tion: The CTRW model in non-static media can be used to
describe Brownian motion in non-static media5,6; When the
motion of the particle is random walk, combining the change
of the volume in the non-static medium and the classical
Chapman-Kolmogorov equations results in the corresponding
Fokker-Planck equation and Langevin equation4. Consistent
with the Stokes-Einstein relationship in polymer physics47,48,
the diffusion coefficient is proportional to the inverse of the
hydrodynamic radius of the polymer, that is, D(N) ∼ 1/Nβ .
Here it is deemed that the diffusion coefficient43 of a polymer
with N = n monomers is D(n) = D0/(n+nmin)

β , where D0
is the diffusion coefficient specific to the polymer monomer,
nmin is the smallest conformation of the polymer, and the ex-
ponent β is determined based on the polymer model41,47. Par-
ticularly, the three values 1, 1/2, and 2 of β , respectively, cor-
respond to the Zimm, Rouse, and Reptation models of poly-
mers. Combining the analysis of the polymer depolymeriza-
tion and polymerization processes in Section II and the def-
inition of the diffusion coefficient, it becomes evident that
D(n(t)) is a stochastic process. Suppose that the evolution
of the number of polymer monomers is not affected by the
non-static medium, but the CM of polymer position follows
Brownian motion, affected by the size fluctuation in the non-
static media. Then the motion of the CM can be represented
by DD model13,43,49 as

dr̄(t) =
a′(t)
a(t)

r̄(t)dt +
√

2D(n(t))dB(t), (8)

whereby r̄(t) = (x̄(t), ȳ(t), z̄(t)), B(t) is a 3-dimensional
Wiener process (Brownian motion), and the diffusion coeffi-
cient D(n(t)) = D0/(n(t)+nmin)

β . The diffusion coefficient
is related to the polymer size, and it can be seen that r̄(t) is a
composite stochastic process. With polymer size fluctuations,
given n(t), the PDF P(r̄, t | n(t)) for CM position satisfies the
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4

TABLE I. Change for the number of monomers in (t, t + τ).

The reaction in τ Probability
P(N(t + τ)−N(t) = 1|N(t) = k) A monomer polymerization λτ +o(τ)
P(N(t + τ)−N(t) =−1|N(t) = k) A monomer depolymerization µτ +o(τ)
P(N(t + τ)−N(t)> 1|N(t) = k) Multiple monomers polymerization o(τ)
P(N(t + τ)−N(t)<−1|N(t) = k) Multiple monomers depolymerization o(τ)
P(N(t + τ)−N(t) = 0|N(t) = k) No polymerization and depolymerization (1−λτ +o(τ))(1−µτ +o(τ))

general diffusion equation

∂P(r̄, t | n(t))
∂ t

=− a′(t)
a(t)

∇r̄ · (r̄P(r̄, t | n(t)))

+
D0

(n(t)+nmin)
β

∇
2
r̄P(r̄, t | n(t)).

(9)

Adopting the processing steps of the literature4, the diffusion
equation (9) can be transformed into the co-moving coordi-
nate system to investigate. Letting Pr(r, t | n(t)) = P(r̄ =
a(t)r, t | n(t)), then one can get

∂Pr(r, t | n(t))
∂ t

=
D(n(t))

a2(t)
∇

2
rPr(r, t | n(t))

− a′(t)
a(t)

Pr (r, t | n(t)) .
(10)

Further denote the corresponding part of P(r̄, t | n(t)) in co-
moving space as W (r, t | n(t)), the PDF of the CM at position
x and time t with provided n(t). The relationship for PDFs in
the two coordinate systems is as follows

P(r̄, t | n(t)) =
W ( r̄

a(t) , t | n(t))
a(t)

. (11)

It is evident that Pr(r, t | n(t))=W (r, t | n(t))/a(t), and hence
the diffusion equation (9) in the co-moving coordinate system
can be formulated as

∂W (r, t | n(t))
∂ t

=
D(n(t))

a2(t)
∇

2
rW (r, t | n(t)), (12)

the coefficient of which depends on the scale factor a(t) since
the Brownian motion is defined in physical space. Define the
random functional

T (t) =
∫ t

0

D(n(t ′))
a2(t ′)

dt ′. (13)

Then there exists T ′(t)=D(n(t))/a2(t), so the diffusion equa-
tion (12) reduces to the standard diffusion equation for Brow-
nian motion

∂W (r,T )
∂T

= ∇
2
rW (r,T ). (14)

Concerning the initial distribution of the CM, we employ the
Dirac δ function in a non-static medium, i.e., P(r̄,0 | n0) =
δn,n0δ (r̄), and it is shown that a(0) = 1, T (0) = 0, implying

W (r,0 | n0) = δn,n0δ (r). Under this initial condition, the so-
lution of (14) via the scale transformation is a Gaussian func-
tion

W (r,T ) =
e−

r2
4T

(4πT )3/2 . (15)

To delineate the position of the CM, we utilize the subordinate
method. In the co-moving coordinate system, the PDF of CM
W (r, t | n0) can be written as29

W (r, t | n0) =
∫

∞

0

e−
r2
4T

(4πT )3/2 PT (T, t | n0)dT, (16)

in which PT (T, t | n0) is the PDF of the subordinate process
T (t). From the definition of n-th order moment of the stochas-
tic process, combining with (16) leads to

〈rn(t) | n0〉=
∫

R3
rnW (r, t | n0)dr

=
∫

∞

0

∫
R3
rn e−

r2
4T

(4πT )3/2 PT (T, t | n0)drdT.
(17)

From (7), it is straightforward to obtain the n-th order moment
in physical coordinate

〈r̄n(t) | n0〉= an(t)〈rn(t) | n0〉 . (18)

Based on (17), the MSD in the co-moving coordinate system
is〈

r2(t) | n0
〉
= 6

∫
∞

0
T PT (T, t | n0)dT = 6〈T (t) | n0〉 . (19)

With regard to the first order moment of T (t), from (13), one
can get

〈T (t) | n0〉=
∫ t

0

∞

∑
n′=0

D0

a2(t ′)(n′+nmin)β
PN
(
n′, t ′ | n0

)
dt ′.

(20)
By taking the full expectation formula, it can be observed that
〈T (t)〉= 〈〈T (t) | n0〉〉,

〈T (t)〉=
∫ t

0
∑

n0,n′

1
a2 (t ′)

D0

(n′+nmin)
β

PN
(
n′, t ′ | n0

)
P(n0,0)dt ′.

(21)
Subsequently, it is necessary to calculate the statistics related
to the CM, given that the initial size of the polymer conforms
to the steady-state distribution P(n0,0) ∼ P∗(n0). When t �
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η , PN (n′, t ′ | n0)∼ P∗(n′), the first order moment (21) reduces
to

〈T (t)〉=
∫ t

0
∑

n0,n′

1
a2(t)

D0

(n′+nmin)
β

P∗ (n0)P∗
(
n′
)

dt ′

= D0

∫ t

0

1
a2(t ′)

dt ′
〈
(n+nmin)

−β

〉
,

(22)

where ∑
∞
n=0

D0
(n+nmin)

β
P∗(n) = D0

〈
(n+nmin)

−β
〉
. When t �

η , PN (n′, t ′ | n0) ∼ δn′,n0 , P(n0,0) ∼ P∗(n0), the first order
moment of T (t) is

〈T (t)〉=
∫ t

0
∑

n0,n′

1
a2 (t ′)

D0

(n′+nmin)
β

P∗ (n0)δn′,n0dt ′

= D0

∫ t

0

1
a2 (t ′)

dt ′
〈
(n+nmin)

−β

〉
.

(23)

Within the physical coordinate system, the MSD for the CM
in two scenarios

〈
r̄2(t)

〉
= a2(t)

〈
r2(t)

〉
= 6a2(t)〈T (t)〉 =

6a2(t)
∫ t

0
1

a2(t ′)dt ′
〈
(n+nmin)

−β
〉
. Obviously, the MSD for the

CM is contingent upon the size of the polymer and the non-
static medium.

The statistics that characterizes the PDF of the stochastic
process also encompasses the kurtosis K, which is principally
utilized to quantify the tail of the PDF and describes the form
of the PDF. In the physical coordinate x̄ direction of the non-
static medium, we contemplate the property of the PDF for
the CM of polymer, namely, the kurtosis in this direction is
defined as42,43,50.

Kx̄ (t) =

〈
(x̄(t)−〈x̄(t)〉)4

〉
〈(x̄(t)−〈x̄(t)〉)2〉2

. (24)

Different kurtosis values are associated with different PDF
distributions, and kurtosis plays a significant role in quantify-
ing non-Gaussian behavior, i.e., evaluating the deviation in the
shape of the PDF from a Gaussian distribution. As a general
rule, the kurtosis value 3 of the Gaussian distribution is select-
ed as the standard, and compared with other cases, if K > 3, it
is called leptokurtic, and if K < 3, it is called platykurtic. In
this paper, the kurtosis is taken into account only in the phys-
ical coordinate system. Furthermore, exploiting the definition
of kurtosis (24), here we sought to determine the expression
for the fourth order moment

〈
(x̄(t)−〈x̄(t)〉)4

〉
. From the pre-

vious expressions (17) and (18), it can be indicated that in the
direction of x̄ there is 〈x̄(t)〉= 0. Consequently, the expression
for kurtosis can be simplified as

Kx̄ (t) =

〈
x̄4(t)

〉
〈x̄2(t)〉2

. (25)

Analogously, the fourth order moment
〈
x(t)4

〉
= 12

〈
T 2(t)

〉
is

first got in the co-moving coordinate system when the initial
conditions satisfy the steady state distribution. Concerning〈
T 2(t)

〉
, once again combining the definition of T (t) and the

equation of full expectation, there exists〈
T 2(t)

〉
=
∫ t

0

∫ t

0
∑

n0,n′,n′′

D0

a2(t ′)(n′+nmin)
β

D0

a2 (t ′′)(n′′+nmin)
β

P(n0,0)

×PN
(
n′′, t ′′,n′, t ′ | n0

)
dt ′dt ′′

=
∫ t

0

∫ t

0
∑

n0,n′,n′′

D0

a2(t ′)(n′+nmin)
β

D0

a2 (t ′′)(n′′+nmin)
β

P(n0,0)

×PN
(
n′′, t ′′ | n′, t ′,n0

)
PN
(
n′, t ′ | n0

)
dt ′dt ′′

=
∫ t

0

∫ t

0
∑

n0,n′,n′′

D0

a2(t ′)(n′+nmin)
β

D0

a2 (t ′′)(n′′+nmin)
β

P(n0,0)

×PN
(
n′′, t ′′ | n′, t ′

)
PN
(
n′, t ′ | n0

)
dt ′dt ′′.

(26)
The conditional probability property of three events is utilized
in the progression from the first equal sign to the second equal
sign PN(n′′, t ′′,n′, t ′ | n0) = PN (n′, t ′ | n0)PN (n′′, t ′′ | n′, t ′,n0).
In the transition from the second equals sign to the third equal-
s sign, the Markov property of Markov processes is utilized,
indicating that the present state is exclusively related to the
state of the preceding moment and is irrelevant to the previ-
ous state, so PN (n′′, t ′′ | n′, t ′,n0) = PN (n′′, t ′′ | n′, t ′). When
t ′, t ′′ � η and t ′′− t ′ � η , due to the time homogeneous of
the birth and death process, there exists PN (n′′, t ′′ | n′, t ′) =
PN (n′′, t ′′− t ′ | n′,0) ∼ P∗(n′′); in this case the second order
moment of T (t) is〈

T 2(t)
〉

=
∫ t

0

∫ t

0
∑

n0,n′,n′′

D0

a2(t ′)(n′+nmin)
β

D0

a2 (t ′′)(n′′+nmin)
β

×P∗ (n0)P∗
(
n′
)

P∗(n′′)dt ′dt ′′

=

(
D0

∫ t

0

1
a2 (t ′)

dt ′
〈
(n+nmin)

−β

〉)2

.

(27)

Similarly,
〈
T 2(t)

〉
=
(

D0
∫ t

0
1

a2(t ′)dt ′
)2 〈

(n+nmin)
−2β
〉
, as

t ′, t ′′� η . By converting the MSD and fourth order moment
in the co-moving coordinate system to the physical coordinate
system, the kurtosis in the physical coordinate system can be
obtained

Kx̄ =

〈
x̄4(t)

〉
〈x̄2(t)〉2

=
a4(t)

〈
x4(t)

〉
(a2(t)〈x2(t)〉)2

= 3
a4(t)

〈
T 2(t)

〉
(a2(t)〈T (t)〉)2 ∼

3 〈(n+nmin)
−2β 〉

〈(n+nmin)
−β 〉2

t� η ,

3 t� η .

(28)

In short time, the PDF for the CM shows a non-Gaussian dis-
tribution, but in long time limit, the PDF tends to a Gaussian
distribution. With the distribution of the stochastic process
T (t), the Gaussian mixed PDF for the CM has a fat-tail feature
from (16). Nevertheless, the PDF returns to a Gaussian dis-
tribution when the stochastic process T (t) tends to be steady
state.
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6

A. Power-law scale factor

Power-law media have widespread applications in nature
and engineering, such as fluid transport through porous medi-
a in geology and market fluctuations in finance. Investigating
the diffusion behavior of power-law media is essential to inter-
pret physical and chemical phenomena. With homogeneous
media, the time evolution of a power-law medium is stated by
a power-law form17,18

a(t) =
(

t + t0
t0

)γ

. (29)

The value of the index γ reflects different media types, γ > 0
means that the media type is expanding, γ < 0 correspond-
s to contracting media, and γ = 0 represents that the media
is static. Power-law exponent has many arduous types of ap-
plications in cosmology, in simplerterms, when γ = 1/2, ra-
diation dominates the universe’s expansion; when γ = 2/3,
matter does. Next, we should pay attention to the MSD in
the direction of x̄ for the CM via (19) and (22), we start by
calculating∫ t

0

1
a2 (t ′)

dt ′ =
∫ t

0

(
t ′+ t0

t0

)−2γ

dt ′

=


t0

2γ−1

(
1−
(

t+t0
t0

)1−2γ
)

γ 6= 1
2 ,

t0 ln
(

t+t0
t0

)
γ = 1

2 .

(30)

In the long-time limit t → ∞, using the above equation (30)
to classify the power-law medium by using 1/2 as the critical
value of γ , the asymptotic behavior of the MSD in the co-
moving coordinate system can be categorically represented as

〈x2(t)〉= 2〈T (t)〉

∼


2t0

2γ−1 D0
〈
(n+nmin)

−β
〉

γ > 1
2 ,

2t0 ln
(

t+t0
t0

)
D0
〈
(n+nmin)

−β
〉

γ = 1
2 ,

2t02γ t1−2γ

1−2γ
D0
〈
(n+nmin)

−β
〉

γ < 1
2 .

(31)

In co-moving coordinate system, while γ > 1/2, the MSD for
the CM tends to stabilize after a sufficiently long time and
asymptotes to a constant related to the mean of birth and death
process and power law exponent. As is apparent, if the medi-
um expands rapidly, i.e., in a strong expanding media, the
movement of the polymer is dominated by the expanding me-
dia and the diffusion of the polymer itself is negligible. When
media expansion is controlled by radiation γ = 1/2, the MSD
increases logarithmically. In case γ < 1/2, the MSD grows
with time as power law with the order of 1−2γ .

The long time asymptotic expression of the MSD in the
physical coordinate system can be directly obtained from the
relation (18) as

〈x̄2(t)〉= a2(t)〈x2(t)〉

∼


2t1−2γ

0 t2γ

2γ−1 D0
〈
(n+nmin)

−β
〉

γ > 1
2 ,

2t ln
(

t+t0
t0

)
D0
〈
(n+nmin)

−β
〉

γ = 1
2 ,

2t
1−2γ

D0
〈
(n+nmin)

−β
〉

γ < 1
2 .

(32)

In physical coordinate system, the CM asymptotically exhibit-
s superdiffusion after a sufficiently long time as γ > 1/2. The
motion for the CM in relatively strong expanding media de-
pends mainly on the expansion of the medium, which is re-
inforced by the results in co-moving coordinate system. For
γ < 1/2, the CM asymptotically exhibits normal diffusion in
weakly expanding or contracting media, where the intrinsic
Brownian motion of the polymer plays a dominant role. The
simulation results are shown in Fig 1. There are similar con-
clusions for Brownian motion and the motion with waiting
time obeying exponential distribution in non-static media.

(a) (b)

(c) (d)

FIG. 1. Numerical simulations of the MSD for the CM in a power-
law medium. The red solid lines in the figure represent our theoreti-
cal results (31) and (32). The parameters related to the random diffu-
sion coefficient are D0 = 1, nmin = 3, λ = 0.45, µ = 0.5, β = 1, and
the initial values x0 = 1 and x̄0 = 1. The simulation results are em-
phasized in blue, where γ = 1 in Fig. (a), and γ =−1/6 (diamond),
γ = 1/6 (cross) in Fig. (b); ballistic diffusion for γ = 1 (asterisk),
γ = 2 (square) in Fig. (c), and for Fig. (d) γ = −1/6 (hexagon),
γ = 1/6 (triangle).

B. Exponential scale factor

The exponential media shows an exponential distribution
on the time scale. It has extensive applications in the fields
of geophysics, financial engineering, and biomedicine, such
as surveying earthquakes, describing the spatial and temporal
evolution of stock prices and interest rates, and studying the
dynamics of proteins inside cells. The exponential media is
defined by the exponential scale factor17,18, as follows

a(t) = eHt . (33)

The H is the Hubble parameter, defined as a′(t)/a(t). In cos-
mology, the exponential scaling factor describes that the ex-
pansion of the universe is dominated by dark energy, H > 0
corresponds to the exponentially expanding media, H < 0 cor-
responds to the exponentially contracting media, and H = 0 is
for the static media that we previously default to in this study.
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7

In the same way, let us take into consideration of the MSD
in the x̄ direction of the exponential medium after a long time.
The MSD for the CM in the co-moving coordinate system be-
haves as

〈x2(t)〉= 2〈T (t)〉 ∼

{
1
H D0

〈
(n+nmin)

−β
〉

H > 0,
(e2|H|t−1)
|H| D0

〈
(n+nmin)

−β
〉

H < 0.
(34)

For H > 0, the MSD in the co-moving coordinate system tends
to be a constant regarding the Hubble parameter and the mean
value of birth and death process for sufficiently long time,
whereas it increases exponentially in the contracting media
H < 0.

In the physical coordinate system, the asymptotic expres-
sion for the MSD turns out to be

〈x̄2(t)〉= a2(t)〈x2(t)〉∼

{
(e2Ht−1)

H D0
〈
(n+nmin)

−β
〉

H > 0,
1
|H|D0

〈
(n+nmin)

−β
〉

H < 0.
(35)

For H > 0, the MSD for the CM in the physical coordinate
system proceeds exponentially with time t. However, for H <
0, the MSD for the CM asymptotes to a constant in a time long
enough. It can be observed that the motion of the polymer
in the exponential medium is dominated by the medium and
the intrinsic Brownian motion is ignored, which is a situation
similar to the motion of the polymer in a power-law strongly
expanding media. Simulation results of MSD in exponential
medium in co-moving and physical coordinates are shown in
Fig 2. Additionally, the odd order moments for the CM can
be revealed to be zero by (17) and (18).

(a) (b)

(c) (d)

FIG. 2. Numerical simulations of the MSD for the CM in the expo-
nential medium. In Figs. (a) and (c), H = 0.1, and in Figs. (b) and
(d), H = −0.1; the red solid lines represent the theoretical results
(34) and (35), and the blue marks indicate the simulation results.

IV. BIVARIATE FOKKER-PLANCK EQUATION AND
FEYNMAN-KAC EQUATION

In the first part of this section, we adopt a subordinate ap-
proach and combine the Feynman-Kac equation for the birth
and death process to obtain the bivariate Fokker-Planck e-
quation satisfied by the PDF for the CM in the physical co-
ordinate system. The second part focuses on the DD mod-
el in 1-dimensional space, and the Feynman-Kac equation
corresponding to the DD model defined by the overdamped
Langevin equation is derived.

A. Derivation of the bivariate Fokker-Planck equation

Fokker-Planck equation describes the evolution of the PDF
of the position for a stochastic process with time. On the ba-
sis of the non-static extension for the polymer CM motion in
Section III, noticeably, the position of the CM rests on the
size of the polymer, furthermore on the Brownian motion of
the polymer as a whole. Primarily, we avail ourselves of the
subordinate process approach to derive the bivariate Fokker-
Planck equations corresponding to the DD model in Section
III.

Utilizing the subordination expression, the PDF of the bi-
variate in the co-moving coordinate system behaves as

g(r,n, t) =
∫

∞

0
W (r,T )O(n,T, t)dT, (36)

the left hand side of which g(r,n, t) denotes the probabili-
ty of the number of monomers n and the CM position r at
the moment t in the co-moving coordinate system. On the
right side of the equal sign, the first term W (r,T ) represents
the Gaussian PDF, which satisfies ∂

∂T W (r,T ) = ∇2
rW (r,T ).

The second term O(n,T, t) is the joint PDF of the number of
monomers n and the functional T at t moment. From the def-
inition of T (t), it follows that T (t) is a functional of the birth
and death process n(t) and the non-static media a(t). Based
on the Appendix A, the Feynman-Kac equation that O(n,T, t)
satisfies is

∂O(n,T, t)
∂ t

= ΦnO(n,T, t)− D(n)
a2(t)

∂

∂T
O(n,T, t). (37)

Let us capitalize (36), incorporating (37) and (14) in the previ-
ous section, to derive bivariate Fokker-Planck equation in the
co-moving coordinate system

∂g(r,n, t)
∂ t

=
∫

∞

0
W (r,T )

∂O(n,T, t)
∂ t

dT

=
∫

∞

0
W (r,T )

(
ΦnO(n,T, t)− D(n)

a2(t)
∂O(n,T, t)

∂T

)
dT

=Φng(r,n, t)+
D(n)
a2(t)

∫
∞

0
O(n,T, t)∇2

rW (r,T )dT

=Φng(r,n, t)+
D(n)
a2(t)

∇
2
rg(r,n, t),

(38)Th
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where Φn is defined in (A5). Let p(r̄,n, t) be the correspond-
ing PDF of g(r,n, t) in the physical coordinate system. By
exploiting the relationship between the PDFs of two coordi-
nates and harnessing the method in the literature4 once again,
contrary to the previous one, on this occasion the PDF in the
co-moving coordinate system is switched to the physical coor-
dinate system, and it is possible to derive the bivariate Fokker-
Planck equation satisfied by the PDF p(r̄,n, t), i.e.,

∂ p(r̄,n, t)
∂ t

=− a′(t)
a(t)

∇r̄ · (r̄p(r̄,n, t))+Φn p(r̄,n, t)

+D(n)∇2
r̄p(r̄,n, t).

(39)

B. Derivation of the Feynman-Kac equation

The researchers propose a DD model51 using the over-
damped Langevin equation to describe a Brownian non-
Gaussian process, where the diffusion coefficient D(t) is a s-
tochastic function relevant to the Ornstein-Uhlenbeck process.
Literature13 investigates the DD model for scaled Brownian
motion along with the simulation for the PDF of the particles
in a long time. Two DD models with external forces52 are s-
tudied, and the difference among these two models is whether
or not they satisfy the fluctuation-dissipation theorem, and the
diffusion equations are deduced, respectively. For the sake of
convenience, we concentrate on the Feynman-Kac equation of
the DD model in the 1-dimensional case

dx̄(t) =
a′(t)
a(t)

x̄(t)dt +
√

2D(n(t))dB(t). (40)

Define the functional of x̄(t) as

A2 =
∫ t

0
U(x̄(t ′))dt ′, (41)

where x̄(t) represents the path of the stochastic process, the
diffusion coefficient D(n(t)) is a stochastic function with re-
spect to the birth death process, and U(x̄(t)) should be speci-
fied in the context of the practical problem. By taking partic-
ular U , one can determine the distribution of the occupation
time of the particle, distribution of the first passage times, and
the area under the path curve53, etc. To derive specifically the
Feynman-Kac equation relative to DD model, firstly the in-
crement of CM displacement in the x̄ direction together with
the functional A2 in the (t, t + τ) time period are concerned,

respectively,

x̄(t + τ)− x̄(t)' a′(t)
a(t)

x̄(t)τ +
√

2D(n(t))(B(t + τ)−B(t))

(42)
and

A2(t + τ)−A2(t) =
∫ t+τ

t
U
(
x̄
(
t ′
))

dt ′ 'U (x̄(t))τ. (43)

With respect to the CM displacement and functional A2 incre-
ments, we resort to the Itô integral, i.e., the integrand function
takes the value of the left endpoint of the interval. Conse-
quently, x̄(t) and D(n(t)) are both independent of the incre-
ments of B(t) over the time period (t, t + τ). The increment
(B(t + τ)−B(t)) is a stationary random process and has the
same distribution as B(τ), i.e., it obeys a normal distribution
with 0 mean and variance τ , and its characteristic function is〈

e−ik(B(t+τ)−B(t))
〉
= e−

k2τ
2 . (44)

Moreover, in conjunction with our discussion of the birth and
death process in Section II, the increment can be written in the
form

f (n(t + τ))− f (n(t))
'λτ f (n(t)+1)+µτ f (n(t)−1)− (µ +λ )τ f (n(t)).

(45)

Denoting the joint PDF for the CM position x̄, the num-
ber of monomers n, and the functional A2 at moment t by
G(x̄,n,A2, t), then

G(x̄,n,A2, t) =
〈
δ (x̄− x̄(t))δ (A2−A2(t))δn,n(t)

〉
. (46)

Predominantly deriving the Feynman-Kac equation in Fourier
space, the Fourier transform of the joint PDF G(x̄,n,A2, t) is

G(k, l, p2, t) = ∑
n

∫
∞

−∞

∫
∞

−∞

e−ikx̄−ip2A2−ilnG(x̄,n,A2, t)dx̄dA2

=
〈

e−ikx̄(t)e−iln(t)e−ip2A2(t)
〉
,

(47)
in which the variables relative to the time domain space and
the Fourier space are x̄→ k, n→ l, and A2→ p2, respectively.
The increment of the joint PDF G(x̄,n,A2, t) in Fourier space
is

G(k, l, p2, t + τ)−G(k, l, p2, t)

=
〈

e−ikx̄(t+τ)e−iln(t+τ)e−ip2A2(t+τ)
〉

−
〈

e−ikx̄(t)e−iln(t)e−ip2A2(t)
〉
.

(48)

Substituting the CM displacement increment (42), the func-
tional increment (43), and the increment of birth death process
(45) into (48), there existsTh
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G(k, l, p2, t + τ)−G(k, l, p2, t)

'
〈

e−ikx̄(t)e−iln(t)e−ip2A2(t)
(
(1+λτe−il +µτeil− (µ +λ )τ)e

−ik
(

a′(t)
a(t) x̄(t)τ+

√
2D(n(t))(B(t+τ)−B(t))

)
e−ip2U(x̄(t))τ −1

)〉
'
〈

e−ikx̄(t)e−iln(t)e−ip2A2(t)
((
−ik

a′(t)
a(t)

x̄(t)τ−D(n(t))k2
τ− ip2U (x̄(t))τ

)
+(λτe−il +µτeil− (µ +λ )τ)

)〉
,

(49)

in which the Taylor expansion is deployed to ignore higher
order terms, and the mutual independence of D(n(t)) and the

increment of Brownian motion is also used. Dividing both
sides of (49) by τ , and taking the limit τ → 0, we obtain

∂

∂ t
G(k, l, p2, t)

=− ik
〈

e−ikx̄(t)e−iln(t)e−ip2A2(t) a′(t)
a(t)

x̄(t)
〉
− k2

〈
e−ikx̄(t)e−iln(t)e−ip2A2(t)D(n(t))

〉
− ip2

〈
e−ikx̄(t)e−iln(t)e−ip2A2(t)U (x̄(t))

〉
+
〈

λe−ikx̄(t)e−il(n(t)+1)e−ip2A2(t)+µe−ikx̄(t)e−il(n(t)−1)e−ip2A2(t)− (µ +λ )e−ikx̄(t)e−iln(t)e−ip2A2(t)
〉
.

(50)

Capitalizing on the time-shift property of the Fourier trans-
form Fn→l{ f (n± c)} = e±ilc f (k) and the derivative prop-

erty, after performing an inverse Fourier transform on both
sides of (50), the Feynman-Kac equation for the joint PDF
G(x̄,n,A2, t) can be organized as follows

∂G(x̄,n,A2, t)
∂ t

=−a′(t)
a(t)

∂

∂ x̄
(x̄G(x̄,n,A2, t))+D(n)

∂ 2

∂ x̄2 G(x̄,n,A2, t)+ΦnG(x̄,n,A2, t)−U (x̄)
∂

∂A2
G(x̄,n,A2, t) . (51)

V. SIMULATIONS

In this section, we present the simulation results by solving
our derived Fokker-Planck equation and Feynman-Kac equa-
tion, by using the deep BSDE method and the Monte Carlo
method, respectively. The initial value problem must be first-
ly transformed into a terminal problem through the time trans-
formation t→ T − t. All numerical examples are executed on
a desktop computer with a 3.40GHz Intel Core i7 processor
and 32 GB of memory.

A. Joint Distribution of CM Positions

In this subsection, we examine the joint probability distri-
bution of the polymer size and the position of the CM, with
consideration of the forward Fokker-Planck equation

∂

∂ t
p(r̄,n, t)− a′(T − t)

a(T − t)
∇r̄ · (r̄p(r̄,n, t))

+Φn p(r̄,n, t)+D(n)∇2
r̄p(r̄,n, t) = 0,

(52)

the terminal condition of which is p(r̄,n,T ) = g(r̄,n).
Let us consider the following parameters: d = 2, D0 =

2, nmin = 3, β = 1, T = 0.5, β (n) = λ = 2, α(n) = µ =

1, a(t) = et . Additionally, we assume that the terminal con-
dition is given by

g(r̄,n) =
κ{0,··· ,9}(n)

10(2π)
1
2

e−
|r̄|2

2 . (53)

We plot the results of deep BSDE method and its relative er-
ror relative to the “exact solution” obtained by Monte Carlo
simulation (Fig. 3). The results of the deep BSDE method
go through 80,000 iterations with a batch size of 2048 at 40
equidistant time steps (N = 40), with a learning rate of 0.0004
for the first 40,000 iterations and 0.0001 for the last 40,000 it-
erations. The results demonstrate that the solution obtained by
solving (52) is consistent with the solution obtained through
Monte Carlo simulation.

B. Joint Distribution of Position Integral Functional

This subsection explores and discusses the joint probability
distribution of size, position, and position-integral functions
for polymer CM. The functional relevant to this application is

A2 =
∫ t

0

∣∣x̄(t ′)∣∣2 dt ′. (54)
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(a)

(b)

FIG. 3. (a) Plot of φ(x|θφ ) as an approximation of p(r̄,n = 7, t = 0)
for the deep BSDE method. (b) Relative error of the deep BSDE
method for p(r̄,n = 7, t = 0), where the “exact solution” is obtained
by the Monte Carlo method.

By respectively employing the deep BSDE method and Monte
Carlo simulation to solve the forward Feynman-Kac equation

∂

∂ t
G̃(x̄,n, p, t)− a′(T − t)

a(T − t)
∇x̄ · (x̄G̃(x̄,n, p, t))+ΦnG̃(x̄,n, p, t)

+
D0

(n+nmin)β
∇

2
x̄G̃(x̄,n, p, t)− ip |x̄|2 G̃(x̄,n, p, t) = 0,

(55)
with terminal condition G̃(x̄,n, p,T ) = g(x̄,n, p), we get the
joint probability distribution.

Considering the following parameters: d = 2, D0 =
2, nmin = 3, β = 0.5, n = 4, x̄ = 0, T = 0.5, β (n) = λ =
2, λ (n) = µ = 1.5, a(t) = t+0.5

0.5 , and the terminal condition

g(x̄,n, p) =
κ{0,··· ,4}(n)

5(2π)
1
2

e−
|x̄|2

2 , (56)

we acquire the results of the two methods (Fig. 4). We divide
p ∈ [−75,75] into five parts on average, and train five deep
BSDE models in parallel, where each model goes through
200,000 iterations of 1024 batch size at 50 equidistant time
steps (N = 50), with a learning rate of 0.0004 for the first

100,000 and 0.0001 for the last 100,000 iterations. The final
results can then be obtained by inverse Fourier transform. The
L2 relative error between the solution obtained by the deep B-
SDE method and the solution obtained by the Monte Carlo
simulation reaches 0.0757. The results indicate that the solu-
tion obtained by solving (55) is consistent with the solution
obtained by Monte Carlo simulation.

FIG. 4. Probability density of first passage time of polymer CM at
n = 4, x̄ = [0,0], t = 0, and A2 ∈ [0,2], which are obtained by deep
BSDE method and Monte Carlo simulation, respectively. The red
line represents the “exact solution” obtained by Monte Carlo simu-
lation, and the blue line is for the solution obtained by solving (55)
using deep BSDE method and making inverse Fourier transform.

VI. CONCLUSION

We establish a DD model by describing the polymerization
and depolymerization of the polymer, and introducing the co-
moving and physical coordinate to characterize the dynamic
behavior in the non-static medium. We also discuss in differ-
ent media what dominates the CM motion. More deeply, we s-
tudy the bivariate Fokker-Planck and Feynman-Kac equations
corresponding to the DD model. Firstly, according to the sub-
ordinate equation, we obtain the diffusion equation satisfied
by the bivariate PDF of the CM in the co-moving coordinate
system, and then make a transformation to the physical coor-
dinate system by utilizing the relation between the two coor-
dinates. It is worth noting that we also focus on the diffusion-
diffusion model in the sense of Itô, and combine with the
properties of the Fourier transform to derive the Feynman-
Kac equation of the joint PDF G(x̄,n,A2, t). In addition, we
solve the corresponding Fokker-Planck and Feynman-Kac e-
quations for the DD model using deep BSDE method and ver-
ify their plausibility through simulations with the Monte Carlo
method.

In this paper, we have found that the Brownian non-
Gaussian diffusion behavior of the CM of polymer is re-
lated to the variation of the polymer size and the expan-
sion/contraction of the media. The following questions can
be further explored in a non-static medium as the next step: 1.
Investigate the CM dynamical behavior, where the chemical
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reaction rates depend on the number of polymer monomer-
s in a limited-polymer-monomer environment; 2. Study the
overall Brownian motion of the polymer, the effects of the
polymer’s own depolymerization and polymerization, and the
random changes in time on the position of the CM.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
on request from the corresponding author.

Appendix A: Derivation of (37)

The Feynman-Kac equation is universally resorted for char-
acterizing the PDF fulfilled by the particle generalized distri-
bution, and next our objective is to obtain the Feynman-Kac
equation in which the joint PDF O(n,A, t) resides. The func-
tional of n(t) is defined as

A1 =
∫ t

0
U(n(t ′), t ′)dt ′, (A1)

where the function U(n, t) depends not only on n(t) but also
explicitly on time. The functional T (t) =

∫ t
0

D(n(t ′))
a2(t ′) dt ′ in the

present research is specific.

For not losing generality, in the following discussion we use
the functional A1. In accordance with the discussion of the
birth and death process in Section II, the process of birth and
death can be viewed as a continuous random time walk, i.e.,
no reaction occurs at (t, t + τ), and after waiting for time τ ,
the depolymerization or polymerization of monomers occurs
at the t + τ moment. As a result, the t + τ of the functional is
linked to the t moment as follows

A1(t + τ) =
∫ t+τ

0
U
(
n
(
t ′
)
, t ′
)

dt ′

=
∫ t

0
U
(
n
(
t ′
)
, t ′
)

dt ′+
∫ t+τ

t
U
(
n(t), t ′

)
dt ′

= A1(t)+
∫ t+τ

t
U
(
n(t), t ′

)
dt ′.

(A2)

Represent the joint PDF for the number of monomers n and
the functional A1 at t+τ moment by O(n,A1, t+τ). From the
master equation (4) and the relation (A2) in Section II, in the

case of n≥ 1, it can be obtained

O(n,A1, t + τ)

= µτO(n+1,A1−
∫ t+τ

t
U(n+1, t ′)dt ′, t)

+λτO(n−1,A1−
∫ t+τ

t
U(n−1, t ′)dt ′, t)

+(1−µτ−λτ)O(n,A1−
∫ t+τ

t
U(n, t ′)dt ′, t).

(A3)

Making the Fourier transform A1→ p1 on both sides of (A3)
and combining the time shift property of Fourier transform
FA1→p1{ f (A1− c)}= e−ip1c f (p1) result in

O(n, p1, t + τ)

= µτe−ip1
∫ t+τ
t U(n+1,t ′)dt ′O(n+1, p1, t)

+λτe−ip1
∫ t+τ
t U(n−1,t ′)dt ′O(n−1, p1, t)

+(1−µτ−λτ)e−ip1
∫ t+τ
t U(n,t ′)dt ′O(n, p1, t).

(A4)

After dividing (A4) by τ , letting τ→ 0, and ignoring the high-
er order terms, then one can get

∂O(n, p1, t)
∂ t

= ΦnO(n, p1, t)− ip1U(n, t)O(n, p1, t), (A5)

where the operator Φn is defined as ΦnO(n) = µO(n+ 1)+
λO(n− 1)− (µ +λ )O(n). Taking inverse Fourier transform
simultaneously on both sides of (A5) leads to

∂O(n,A1, t)
∂ t

= ΦnO(n,A1, t)−U(n, t)
∂

∂A1
O(n,A1, t), (A6)

in which

FA1

{
− ∂

∂A1
U(n, t)O(n,A1, t)

}
=−ip1U(n, t)O(n, p1, t).

Appendix B: Deep BSDE Method

The deep BSDE method, as presented in a recently pub-
lished paper54, represents a class of deep learning methods
designed for solving high-dimensional partial differential
equations (PDEs). Subsequently, a discrete version of the
BSDE method is developed, and it is successfully used to
solve the PDEs with infinte dimentional discrete operators55.
For the convenience of readers, this part will provide a brief
introduction of the fundamental concepts underlying the deep
BSDE method, and make it adapted to the PDEs considered
in this paper.

1. PDEs and BSDEs

Our investigation primarily focuses on a class of semilin-
ear parabolic PDEs with infinite dimensional discrete opera-
tor. These PDEs can be uniformally represented as the form
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∂

∂ t
u(x,n, p, t)− a′(T − t)

a(T − t)
∇x · (xu(x,n, p, t))+Tnu(x,n, p, t)+

D0

(n+nmin)β
∇

2
xu(x,n, p, t)+ f (x,n, p,u(x,n, p, t)) = 0, (B1)

the terminal condition of which is u(x,n, p,T ) = g(x,n, p),
and the unknown is u : N×Rd×R1× [0,T )→ C,

Tn f (n) =

{
α(n)( f (n+1)− f (n))+β (n)( f (n−1)− f (n)), n≥ 1,
α(n)( f (1)− f (0)), n = 0,

(B2)

where α(n) and β (n) are given functions satisfying
α(n),β (n)≥ 0 for n ∈N, and β (0) = 0. Obviously, Eqs. (39)

and (51) can both be changed as the form of (B1).
Let n(t) be a birth and death process satisfying

P(n(t + τ)−n(t) = k|n(t) = n) =


α(n)τ +o(τ), k = 1,
β (n)τ +o(τ), k =−1,
1− (α(n)+β (n))τ +o(τ), k = 0,
o(τ), otherwise,

(B3)

and x(t) a d-dimensional stochastic process, which can be ex-
pressed as

x(t)− x(0)

=−
∫ t

0

a′(T − τ)

a(T − τ)
x(τ)dτ +

∫ t

0

√
2D0

(n(τ)+nmin)β
dB(τ).

(B4)
Then, the solution of (B1) u(x(t),n(t), p, t) satisfies the
BSDE55,56

u(x(t),n(t), p, t)−g(x(t),n(t), p)

=
∫ T

t
f (x(τ),n(τ), p,u(x(τ),n(τ), p,τ))dτ−

∫ T

t

√
2D0

(n(τ)+nmin)β
∇xu(x(τ),n(τ), p,τ) ·dB(τ)

−
∫ T

t

∫
Z\{0}

u(x(τ),n(τ−)+n, p,τ)−u(x(τ),n(τ−), p,τ)J̃(dτ,dn;n(τ−)).

(B5)

2. Deep BSDE Method

Now, by resolving (B4) and (B5), we can obtain the solu-
tion of the corresponding original equation. We pay attention
to the solution u(x0,n0, p,0), where (x0,n0, p) ∈ N×Rd×R1

has already been determined. The u(x0,n0, p,0)≈ θφ is treat-
ed as a parameter in the model, and the BSDE (B5) is consid-
ered as the way to get the value of u at the terminal time T
when u(x(0) = x0,n(0) = n0, p,0) and ∇xu(x(t),n(t), p, t) as

well as u(x(t),n(t−)±1, p, t) are known, where ∇xu(x,n, p, t)
is approximated through a neural network

∇xu(x,n, p, t)≈ ψ1
(
x,n, p, t|θψ1

)
, (B6)

with parameters θψ1 and δ±n u(x,n, p, t) = [u(x,n− 1, p, t)−
u(x,n, p, t),u(x,n+1, p, t)−u(x,n, p, t)]T is approximated by
a neural network

δ
±
n u(x,n, p, t)≈ ψ2(x,n, p, t|θψ2), (B7)
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with parameters θψ2 . Given a division of the time interval
[0, t] : 0 = t0 < t1 < · · · < tN−1 < tN = T , we use the simple

Euler scheme for k = 0,1, · · · ,N−1 as

x(tk+1)− x(tk)

=−a′(T − tk)
a(T − tk)

x(tk)∆tk +

√
2D0

(n(τ)+nmin)β
∆B(tk)

(B8)

and

u(x(tk+1),n(tk+1), p, tk+1)

=u(x(tk),n(tk), p, tk)− f (x(tk),n(tk), p,u(x(tk),n(tk), p, tk))∆tk +

√
2D0

(n(tk)+nmin)β
∇xu(x(tk),n(tk), p, tk) ·∆B(tk)

+u(x(tk),n(tk+1), p, tk)−u(x(tk),n(tk), p, tk)−Tnu(x(tk),n(tk), p, tk),

(B9)

where ∆tk = tk+1− tk, ∆B(tk) = B(tk+1)−B(tk), and n(tk+1)−
n(tk) satisfies (B3).

We take the discretized time {tk}0≤k≤N , frequency p,
the randomly generated paths {n(tk)}0≤k≤N , {x(tk)}0≤k≤N ,
and {B(tk)}0≤k≤N as the input data of the neural net-

work. Letting θ = {θφ ,θψ1 ,θψ2}, the final output
û({x(tk),n(tk), p,B(tk), tk}0≤k≤N |θ) is obtained through the
scheme (B9) as an approximation of g(x(T ),n(T ), p). The
difference from the given terminal conditions is used to con-
struct the loss function

Loss(θ) = E
[
|g(x(T ),n(T ), p)− û({x(tk),n(tk), p,B(tk), tk}0≤k≤N |θ)|2

]
. (B10)
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