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Abstract. In this paper, we derive a class of backward stochastic differential equations (BSDEs) for infinite-
dimensionally coupled nonlinear parabolic partial differential equations, thereby extending the deep BSDE
method. In addition, we introduce a class of polymer dynamics models that accompany polymerization and
depolymerization reactions, and derive the corresponding Fokker-Planck equations and Feynman-Kac equa-
tions. Due to chemical reactions, the system exhibits a Brownian yet non-Gaussian phenomenon, and the
resulting equations are infinitely dimensionally coupled. We solve these equations numerically through our
new deep BSDE method, and also solve a class of high-dimensional nonlinear equations, which verifies the
effectiveness and shows approximation accuracy of the algorithm.
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1 Introduction

In recent years, the diffusion phenomenon with non-Gaussian shape in complex systems
has been gradually discovered experimentally, e.g. microbeads in lipid tubes [36], net-
works [37] or in a matrix of micropillars [4]. More examples include the movement of
tracers in colloids, polymeric, and active suspensions [39], and the motion of individu-
als in heterogeneous populations such as nematodes [20]. This paper develops the deep
BSDE method to model and simulate this kind of polymer dynamics.

More concretely, we focus on the diffusion behavior of a class of polymeric microparti-
cles that accompany polymerization and depolymerization chemistry. It is shown that the
polymerization and depolymerization of molecules is the natural basis of Brownian yet
non-Gaussian diffusion of the center of mass (CM) [1]. The diffusivity D of the CM is af-
fected by the molecular size N, and the molecular size is determined by the chemical reac-
tion and changes randomly, so the diffusivity D(N(t)) becomes a stochastic process. Such
random diffusivity leads to Brownian yet non-Gaussian diffusion. Further, reference [27]
discusses the motion of a polymer in a chemostatted monomer bath while the monomer
concentration in the bath changes. Reference [41] derives the Fokker-Planck equations for
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CM and the Feynman-Kac equations through subordination technique [3, 5, 13]. Since the
size of the polymer particle is a discrete variable, the resulting equation is of bivariate form

∂

∂t
u(n, x, t) = Tnu(n, x, t) +

1

2
Tr
(
σσ⊤(n, x, t)(Hessx)u(n, x, t)

)

+∇xu(n, x, t) · µ(n, x, t) + f
(
t, n, x, u(n, x, t),

(
σ⊤∇xu

)
(n, x, t)

)
(1.1)

with the initial condition u(n, x, 0) = g(n, x), here Tn is an operator with respect to the
discrete variable n. If we consider n as a state parameter, then Eq. (1.1) can be seen as
an infinite-dimensionally coupled system, the way of coupling depends on the opera-
tor Tn.

With the growth of data resources and computing power, deep learning has been be-
coming an important methodology of our research. In recent years, a large number of deep
learning-based partial differential equation (PDE) solvers have been developed, most of
which are inspired by traditional methods. But unlike traditional methods, learning-based
methods reduce the requirements for meshing and directly use neural networks as basis
functions. These improvements allow us to avoid various complex problems encoun-
tered by traditional methods when solving PDEs. For example, the deep Ritz method [12]
is a deep learning method based on the variational principle, which uses deep learn-
ing to solve the variational problem corresponding to PDEs. Least squares-based deep
learning methods include deep Galerkin method [34] and physics-informed neural net-
works [32], which train models by minimizing the squared residuals of PDEs. Physics-
informed neural networks also has a discrete-time version, which is based on the Runge-
Kutta method. Weak adversarial networks [40] provide a method for solving the weak
formulations of high-dimensional partial differential equations through adversarial learn-
ing. E et al. [11, 18] propose a deep learning method for solving parabolic PDEs based on
BSDEs, called the deep BSDE method. References [15, 19] provide posterior estimates of
the deep BSDE method.

The main contributions of this paper are as follows. Defining

Tn f (n) =

{
α(n)

(
f (n + 1)− f (n)

)
+ β(n)

(
f (n − 1)− f (n)

)
, n ≥ 1,

α(0)
(

f (1)− f (0)
)
, n = 0,

(1.2)

where α(n) and β(n) are known functions, we derive the BSDEs of Eq. (1.1) by construct-
ing a stochastic process X(t) coupled with the birth-death process N(t) and extend the
deep BSDE method (see Section 2). In addition, we present a class of applications of our
new method in solving polymer dynamics problems. Specifically, we model a class of
polymer particle diffusion dynamics accompanied by polymerization and depolymeriza-
tion reactions, and derive the forward (backward) Fokker-Planck equations and the cor-
responding Feynman-Kac equations (see Section 3). To solve the Feynman-Kac equations,
we extend the deep BSDE method to the space of frequency domain (see Section 4). On
the aspect of the deep BSDE method, the main distinction of this work from [18] can be
summarized as follows:

(i) The process considered in this paper is the coupling of the diffusion process with the
jumping one, instead of the pure diffusion process.
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(ii) The developed method is to solve a system coupling high-dimensional system with
infinite-dimensional lattice system, and an appropriate neural network structure is
carefully designed (see Section 5).

(iii) The BSDE derived in this paper is different from the one in references [29, 30], since
it has a jumping term. Then, most of existing conclusions are no longer applicable.

In the following, we first derive the BSDEs of Eq. (1.1) and design the correspond-
ing deep BSDE method. In Section 3, starting from the Langevin equation, we introduce
a class of polymer dynamics models that accompany chemical reactions and derive the
corresponding Fokker-Planck equations and Feynman-Kac equations. In Section 4, we
perform extensively numerical experiments for the specific application problems obtained
in Section 3, and designed and solved a class of high-dimensional and nonlinear problems,
which verifies the effectiveness of our new algorithm in solving various problems. In Sec-
tion 5, we give the details of the neural network structures, and verify the performance
of the neural networks and the factors affecting the accuracy of the algorithm through
numerical experiments. At the end, we summarize our work and discuss the remaining
issues of this method to be solved and our future work.

2 BSDEs and deep BSDE method

The deep BSDE method [11, 18] is an effective deep learning method for solving high-
dimensional semi-linear parabolic PDEs. The key idea of this method is to use the connec-
tion between PDEs and BSDEs [29, 30] to transform the problem of solving PDEs into the
one of solving the corresponding BSDEs. In this section, we derive the BSDEs satisfied by
the solution of Eq. (1.1) and design the numerical scheme of our new deep BSDE method.

2.1 BSDEs

Without lose of generality, we consider a class of semilinear parabolic PDEs with infinite
dimensional coupling. These PDEs can be represented as

∂

∂t
u(n, x, t) + Tnu(n, x, t) + Txu(n, x, t)

+ f
(
t, n, x, u(n, x, t),

(
σ⊤∇xu

)
(n, x, t)

)
= 0 (2.1)

with the given terminal condition u(n, x, T) = g(n, x). Here the unknown is u : N × R
d ×

[0, ∞) → R, Tn is a difference operator on variable n defined by (1.2),

Tx =
1

2

d

∑
i=1

(σσ⊤)ii(n, x, t)
∂2

∂x2
i

+
d

∑
i=1

µi(n, x, t)
∂

∂xi
, (2.2)

µ is a known vector-valued function, σ is a known d × d matrix-valued function, and f is
a known nonlinear function.
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Let N(t) be a birth-death process that satisfies

P
(

N(t + τ)− N(t) = k|N(t) = n
)

=






α(n)τ + o(τ), k = 1,

β(n)τ + o(τ), k = −1,

1 −
(
α(n) + β(n)

)
τ + o(τ), k = 0,

o(τ), otherwise,

(2.3)

where α(n), β(n) ≥ 0 for n ∈ N, and β(0) = 0. Let ∆N(t; N(t−)) = N(t) − N(t−) be
the jump process with respect to N(t). For any subset A ⊆ Z \ {0}, define the counting
random measure

J
(
dt, A; N(t−)

)
= ∑

n∈A

δ
(
∆N

(
t; N(t−)

)
− n

)
dt. (2.4)

Then the birth-death process N(t) can be re represented as an integral form

N(t) = N(0) +
∫ t

0

∫

Z\{0}
nJ

(
dτ, dn; N(τ−)

)
. (2.5)

Let ν(dt, A; N(t−)) = π(A; N(t−))dt be a compensator of J such that

J̃
(
t, A; N(t−)

)
=

∫ t

0

∫

A
(J − ν)

(
dτ, dn; N(τ−)

)

is a martingale. Note here,

π({k}; n) =





α(n), k = 1,

β(n), k = −1,

0, otherwise.

(2.6)

Let B(t) be a d-dimensional Brownian motion and X(t) be a d-dimensional stochastic pro-
cess satisfying

X(t) = X(0) +
∫ t

0
µ
(

N(τ), X(τ), τ
)

dτ +
∫ t

0
σ
(

N(τ), X(τ), τ
)

dB(τ). (2.7)

Driven by the stochastic processes N(t) and X(t), the following result holds.

Lemma 2.1. If X(t) is a stochastic integral of the form (2.7), then, for each u(n, ·, ·) ∈ C2(Rd)×
C1([0, ∞)), t ≥ 0, we have

u
(

N(t), X(t), t
)
− u

(
N(0), X(0), 0

)

=
∫ t

0

∂

∂t
u
(

N(τ), X(τ), τ
)
+ Txu

(
N(τ), X(τ), τ

)
dτ +

∫ t

0

(
∇xu⊤σ

)(
N(τ), X(τ), τ

)
dB(τ)

+
∫ t

0

∫

Z\{0}
u
(

N(τ−) + n, X(τ), τ
)
− u

(
N(τ−), X(τ), τ

)
J
(

dτ, dn; N(τ−)
)

. (2.8)
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Proof. Define a sequence of stopping times recursively by T0 = 0 and

Tn = inf{t > Tn−1; |N(t) − N(Tn−1)| 6= 0}.

For each t > 0, we have

u
(

N(t), X(t), t
)
− u

(
N(0), X(0), 0

)

=
∞

∑
j=0

u
(

N(t ∧ Tj+1), X(t ∧ Tj+1), t ∧ Tj+1

)
− u

(
N(t ∧ Tj), X(t ∧ Tj), t ∧ Tj

)

=
∞

∑
j=0

u
(

N(t ∧ Tj+1−), X(t ∧ Tj+1), t ∧ Tj+1

)
− u

(
N(t ∧ Tj), X(t ∧ Tj), t ∧ Tj

)

+
∞

∑
j=0

u
(

N(t ∧ Tj+1), X(t ∧ Tj+1), t ∧ Tj+1

)
− u

(
N(t ∧ Tj+1−), X(t ∧ Tj+1), t ∧ Tj+1

)

=
∫ t

0

{
∂

∂t
u
(

N(τ), X(τ), τ
)
+

1

2
Tr
[
(σσ⊤)

(
N(τ), X(τ), τ

)
(Hessx)u

(
N(τ), X(τ), τ

)]

+ (∇xu · µ)
(

N(τ), X(τ), τ
)
}

dτ

+
∫ t

0

[
∇xu

(
N(τ), X(τ), τ

)]⊤
σ
(

N(τ), X(τ), τ
)

dB(τ)

+
∫ t

0

∫

Z\{0}
u
(

N(τ−) + n, X(τ), τ
)
− u

(
N(τ−), X(τ), τ

)
J
(
dτ, dn; N(τ−)

)
,

where we have used the Itô’s formula.

With the help of Lemma 2.1, we can easily obtain the BSDE satisfied by the solution
u(n, x, t) of Eq. (2.1).

Theorem 2.1. Let u(n, x, t) be the solution of the Eq. (2.1), N(t) be a stochastic process satisfying
(2.3), and X(t) be a stochastic process satisfying (2.7). Then u(N(t), X(t), t) satisfies the BSDE

u
(

N(t), X(t), t
)
− g

(
N(T), X(T)

)

=
∫ T

t
f
(

τ, N(τ), X(τ), u
(

N(τ), X(τ), τ
)

,
(
σ⊤∇xu

)(
N(τ), X(τ), τ

))
dτ

−
∫ T

t

∫

Z\{0}
u
(

N(τ−) + n, X(τ), τ
)
− u

(
N(τ−), X(τ), τ

)
J̃
(
dτ, dn; N(τ−)

)

−
∫ T

t

[
∇xu

(
N(τ), X(τ), τ

)]⊤
σ
(

N(τ), X(τ), τ
)

dB(τ). (2.9)

Proof. Applying Lemma 2.1 to u(N(s), X(s), s) between s = t and s = T, one can get the
BSDE (2.9).
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Let Nn,t
s = N(s) be a birth-death process with N(t) = n and Xx,t

s = X(t) the corre-
sponding subordinated stochastic process with X(t) = x. One can get a direct conclusion
through Theorem 2.1.

Corollary 2.1. If f (t, n, x, y, z) = c(t, n, x)y, then the BSDE (2.9) has the explicit solution

u
(

Nn,t
s , Xx,t

s , s
)
− e

∫ T
s c(τ,Nn,t

τ ,Xx,t
τ )dτg

(
Nn,t

T , Xx,t
T

)
(2.10)

= −
∫ T

s
e
∫ τ

s c(r,Nn,t
r ,Xx,t

r )dr
(
∇xu⊤σ

)(
Nn,t

τ , Xx,t
τ , τ

)
dB(τ)

−
∫ T

s
e
∫ τ

s c(r,Nn,t
r ,Xx,t

r )dr
∫

Z\{0}
u
(

Nn,t
τ− + n, Xx,t

τ , τ
)
− u

(
Nn,t

τ−, Xx,t
τ , τ

)
J̃
(
dτ, dn; Nn,t

τ−
)
,

and

u(n, x, t) = E
[
u
(

Nn,t
t , Xx,t

t , t
)]

= E

[
e
∫ T

t c(τ,Nn,t
τ ,Xx,t

τ )dτg
(

Nn,t
T , Xx,t

T

)]
. (2.11)

2.2 Deep BSDE method

We focus on the solution u(n0, x0, 0), where (n0, x0) ∈ N × R
d is already determined.

We treat u(n0, x0, 0) ≈ θφ
1 as a parameter in the model and view BSDE (2.9) as the

way to get the value of u at the terminal time T when u(N(0) = n0, X(0) = x0, 0) and

∇xu(N(t), X(t), t) and u(N(t) ± 1, X(t), t) are known, where (σ⊤∇xu)(n, x, t) is approxi-
mated by a neural network

(
σ⊤∇xu

)
(n, x, t) ≈ ψ1(n, x, t|θψ1

) (2.12)

with parameters θψ1
, and

δ±n u(n, x, t) = [u(n + 1, x, t)− u(n, x, t), u(n − 1, x, t)− u(n, x, t)]⊤

is approximated by a neural network

δ±n u(n, x, t) ≈ ψ2(n, x, t|θψ2
) (2.13)

with parameters θψ2
2.

On this basis, one can design the numerical schemes by discretizing time. Given a par-
tition of the time interval [0, t] : 0 = t0 < t1 < · · · < tN−1 < tN = T, we consider the
simple Euler scheme for k = 0, 1, . . . , N − 1,

X(tk+1)− X(tk) = µ
(

N(tk), X(tk), tk

)
∆tk + σ

(
N(tk), X(tk), tk

)
∆B(tk), (2.14)

1Here, we design our algorithm by taking the solution of Eq. (2.1) at a fixed time t = 0 and a single space-point (n0, x0)
as an example, so that the target solution can be approximated by a parameter denoted as θφ. When one is interested in the
solution of a region, one can also use the proposed method, as described in Section 5.1, where one only needs to use a neural
network to approximate the target solution u(n, x, 0) ≈ φ(n, x; θφ).

2Here, in order to make the formulation of the algorithm clearer, we use two different neural networks, ψ1(n, x, t) and
ψ2(n, x, t), to approximate (σ⊤∇xu)(n, x, t) and δ±n u(n, x, t), respectively. Obviously, one can also merge them into a single

neural network ψ : N × R
d × [0, ∞) → R

d+2.
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u
(

N(tk+1), X(tk+1), tk+1

)

= u
(

N(tk), X(tk), tk

)
+

[
∇xu

(
N(tk), X(tk), tk

)]⊤
σ
(

N(tk), X(tk), tk

)
∆B(tk)

+ u
(

N(tk+1), X(tk), tk

)
− u

(
N(tk), X(tk), tk

)
− TN(tk)

u
(

N(tk), X(tk), tk

)
∆tk

− f
(

tk, X(tk), N(tk), u
(

N(tk), X(tk), tk

)
,
(
σ⊤∇xu

)(
N(tk), X(tk), tk

))
∆tk, (2.15)

where ∆tk = tk+1 − tk, ∆B(tk) = B(tk+1)− B(tk), and N(tk+1)− N(tk) satisfies (2.3).
We take the discretized time {tk}0≤k≤N, the randomly generated paths {N(tk)}0≤k≤N ,

{X(tk)}0≤k≤N , and {B(tk)}0≤k≤N as the input data of the neural network. Letting θ =
{θφ, θψ1

, θψ2
}, the final output û({N(tk), X(tk), B(tk), tk}0≤k≤N |θ) is obtained through the

scheme (2.15) as an approximation of g(N(T), X(T)). The difference from the given ter-
minal condition can be used to construct the loss function

Loss(θ) = E

[∣∣g
(

N(T), X(T)
)
− û

(
{N(tk), X(tk), B(tk), tk}0≤k≤N |θ

)∣∣2
]
. (2.16)

One can refer to Section 5 for more details on the architecture and performance of
the neural network. Now, one can optimize the neural network parameters θ using the
stochastic gradient descent-type (SGD) algorithm. The numerical experiments in this pa-
per use the Adam optimizer [22].

3 Bivariate kinetic equations for polymer diffusion

In this section, we introduce a class of applications of Eq. (1.1) in polymer dynamics sce-
narios that accompany chemical reactions [27]. Specifically, we present and simply show
the derivation process of the forward and backward Fokker-Planck equations and the
Feynman-Kac equations satisfied by the polymer particle CM that accompanies the poly-
merization and depolymerization reactions through subordination [41].

To describe the diffusion process of polymers, we start with the combined set of stocha-
stic equations

d

dt
X(t) =

√
2D

(
N(t)

)
ξ(t), (3.1a)

D
(

N(t)
)
=

D0(
N(t) + nmin

)α . (3.1b)

Expression (3.1a) designates the well-known overdamped Langevin equation driven by
the white Gaussian noise ξ(t). The diffusion coefficient D(N(t)) is a function of the rel-
ative size N(t) of the linear polymer particles, which follows polymer physics [8, 10]. In
Eq. 3.1b, D0 is specific to the polymer subunit, α is specific to the selected polymer model,
and nmin corresponds to the size of a polymer nucleus.

We consider the birth-death process N(t) of fluctuating relative size of polymer particle
described in [27], which is the simplest linear polymer [28]. The process N(t) satisfies
N(t) ∈ N for t ≥ 0,

P
(

N(t + ∆t) = j|N(t) = i
)
= pij(∆t), (3.2)
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pij(∆t) =






λ(i)∆t + o(∆t), j = i + 1,

µ(i)∆t + o(∆t), j = i − 1,

1 − λ(i)∆t − µ(i)∆t + o(∆t), j = i,

o(∆t), otherwise

(3.3)

for small ∆t, where λ(i) and µ(i) are non-negative constants for all i and µ(0) = 0.
To apply the theory of subordination [5], we first consider the integral functional

τ(t) =
∫ t

0
D
(

N(s)
)

ds, (3.4)

as well as the joint probability density

u(n, τ, t) = E

[
I{N(t)=n}δ(τ(t)− τ)

]
,

and the conditional probability density

un0
(τ, t) = E

[
δ
(
τ(t)− τ

)
|N(0) = n0

]
,

where I is the indicator function and δ(x) is the Dirac function.
Through simple derivation (see [41] or Appendices A and B), one can obtain the fol-

lowing two classes of subordinate equations.

Lemma 3.1. The forward subordinate equations governing the probability density u(n, τ, t) reads






∂

∂t
u(n, τ, t) = Lnu(n, τ, t)− D(n)

∂

∂τ
u(n, τ, t),

u(n, τ, 0) = gn(n)δ(τ),
(3.5)

where

Ln f (n) =

{
µ(n + 1) f (n + 1) + λ(n − 1) f (n − 1)−

(
µ(n) + λ(n)

)
f (n), n > 0,

µ(1) f (1)− λ(0) f (0), n = 0
(3.6)

is a difference operator on variable n, and gn(n) is the probability distribution of N(0).

Lemma 3.2. The backward subordinate equations governing the probability density un0
(τ, t) reads





∂

∂t
un0

(τ, t) = Fn0
un0

(τ, t)− D(n0)
∂

∂τ
un0

(τ, t),

un0
(τ, 0) = δ(τ),

(3.7)

where

Fn0
fn0

=

{
λ(n0)( fn0+1 − fn0

) + µ(n0)( fn0−1 − fn0
), n0 > 0,

λ(0)( f1 − f0), n0 = 0
(3.8)

is a difference operator on variable n0.
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Remark 3.1. Note that when letting α(n) = λ(n), β(n) = µ(n) for n ≥ 0, the operator Tn

is the same as Fn. Letting λ(−1) = 0, α(n) = µ(n + 1), β(n) = λ(n − 1) for n ≥ 0, the
operators Tn and Ln satisfy

Ln f (n) = Tn f (n) + c(n) f (n), (3.9)

where c(n) = α(n) + β(n)− α(n − 1)− β(n + 1).

One can combine the subordinate equations (3.5) and (3.7) to derive the forward and
backward Fokker-Planck equations. First it can be noticed that the probability density
function

P̄(x, t) = P̄
(

x, t|D
(

N(t)
))

= E
[
δ
(

X(t)− x
)
|D

(
N(t)

)]

fulfills the diffusion equation

∂

∂t
P̄(x, t) = D

(
N(t)

)
∇2

x P̄(x, t). (3.10)

Then, we can rewrite the Langevin equations (3.1) in the subordinated form [5]

d

dτ
X(τ) =

√
2ξ(τ), (3.11a)

d

dt
τ(t) = D

(
N(t)

)
. (3.11b)

After this, the Green function of the diffusion equation has the form

G(x, τ) =
1√

(4πτ)d
exp

(
−|x|2

4τ

)
. (3.12)

Therefore, if the distribution of the path τ is known, one can get P(x, t) = E[δ(X(t) − x)]
by averaging the Green’s function over τ in the form

P(x, t) =
∫ ∞

0
T(τ, t)G(x, τ)dτ, (3.13)

where T(τ, t) is the probability density function of the process τ(t). Eq. (3.13) is the well-
known subordination formula.

Consider the probability density P̃(x, τ) = E[δ(X(τ)− x)|τ] and the initial value prob-
lem 




∂

∂τ
P̃(x, τ) = ∇2

x P̃(x, τ),

P̃(x, 0) = gx(x),
(3.14)

where gx(x) is the distribution of X(0). The solution to problem (3.14) satisfies

P̃(x, τ) =
∫

Rd
G(x − y, τ)gx(y)dy =

1√
(4πτ)n

∫

Rd
e−

|x−y|2
4τ gx(y)dy. (3.15)
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We define
u(n, x, t) = E

[
I{N(t)=n}δ

(
X(t)− x

)]

as the joint distribution of the polymer particle size N(t) and CM position X(t) at time t,
and

un0
(x, t) = E

[
δ
(

X(t)− x
)
|N(0) = n0

]

the probability density function of the polymer particle CM position X(t) at time t for
N(0) = n0. Then, one can get the following two equations (see [41] or Appendix C).

Theorem 3.1. The joint probability distribution u(n, x, t) satisfies the forward Fokker-Planck
equation 




∂

∂t
u(n, x, t) = Lnu(n, x, t) + D(n)∇2

xu(n, x, t),

u(n, x, 0) = g(n, x),
(3.16)

where g(n, x) is the given initial joint distribution.

Theorem 3.2. The probability density function un0
(x, t) satisfies the backward Fokker-Planck

equation 



∂

∂t
un0

(x, t) = Fn0
un0

(x, t) + D(n0)∇2
xun0

(x, t),

un0
(x, 0) = gn0

(x),
(3.17)

where gn0
(x) is the initial distribution of particles with an initial size N(0) = n0.

The functionals of diffusive motion have many applications [9, 38], and they arise in
numerous problems across a variety of scientific fields from condensed matter physics [6,
14, 21], to hydrodynamics [2], meteorology [23], and finance [7, 25]. Consider the position
functional

Y(t) =
∫ t

0
U
(
X(τ)

)
dτ, (3.18)

where U : R
d → R

1 is a given function.
We define

u(n, x, y, t) = E

[
I{N(t)=n}δ

(
X(t)− x

)
δ
(
Y(t)− y

)]

as the joint probability distribution of polymer size N(t), CM position X(t), functional
Y(t) at time t, and

un0,x0
(y, t) = E

[
δ
(
Y(t)− y

)
|N(0) = n0, X(0) = x0

]

as the probability density function of functional Y(t) at time t given N(0)=n0, X(0)=x0.
Below, we give the forward Feynman-Kac equations governing the joint distribution
u(n, x, y, t) and the backward Feynman-Kac equations governing the distribution
un0,x0

(y, t) (see [41] or Appendix D).
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Theorem 3.3. Let

ũ(n, x, p, t) =
∫

R

u(n, x, y, t)e−ipydy

be the Fourier transform of the joint probability density u(n, x, y, t) with respect to y → p. Then
it satisfies the forward bivariate Feynman-Kac equations





∂

∂t
ũ(n, x, p, t) = Lnũ(n, x, p, t) + D(n)∇2

x ũ(n, x, p, t)− ipU(x)ũ(n, x, p, t),

ũ(n, x, p, 0) = g(n, x).

(3.19)

Theorem 3.4. Let

ũn0,x0
(p, t) =

∫

R

un0,x0
(y, t)e−ipydy

be the Fourier transform of the probability density un0,x0
(y, t) with respect to y → p. Then it

satisfies the backward Feynman-Kac equations





∂

∂t
ũn0,x0

(p, t) = Fn0
ũn0,x0

(p, t) + D(n0)∇2
x0

ũn0,x0
(p, t)− ipU(x0)ũn0,x0

(p, t),

ũn0,x0
(p, 0) = 1.

(3.20)

So far, we have obtained the forward and backward Fokker-Planck equations (3.16),
(3.17) and the Feynman-Kac equations (3.19), (3.20) for the polymer dynamics accompa-
nying the polymerization and depolymerization reactions. Each of these four types of
equations contains a discrete variable n related to the size of the polymer particle, gov-
erned by two types of discrete operators (3.6), (3.8). By Remark 3.1, one can easily gen-
eralize these four types of equations into the form of Eq. (1.1). As mentioned above, they
are infinitely dimensional coupled systems. Next, we will obtain their numerical solutions
through the deep BSDE method developed in Section 2.

4 Numerical results

In this section, we will use the deep BSDE method constructed in Section 2 to solve the four
types of bivariate kinetic equations of polymers obtained in Section 3 as well as one type
of polymer reaction diffusion equation. To test the robustness of our deep BSDE method,
we construct various types of discontinuous α(n) and β(n) in numerical experiments in
this section, which are much more complex than the constant and linear rates [1, 27], thus
providing a guarantee for practical applications. At the same time, we demonstrate the
effectiveness of deep BSDE method by comparing the numerical solution of the neural
network with the “exact solution” obtained by Monte-Carlo method (MCM). To apply the
deep BSDE method, as described in Section 2, we consider the equations after the time
transformation t → T − t below and keep the notation consistent.
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4.1 Backward Fokker-Planck equation

Consider the backward Fokker-Planck equation




∂

∂t
un0

(x, t) +Fn0
un0

(x, t) + D(n0)∇2
xun0

(x, t) = 0,

un0
(x, T) = gn0

(x),
(4.1)

governing the probability density function un0
(x, t) of polymer CM position X(t) for

N(0) = n, where

Fn0
fn0

=

{
λ(n0)( fn0+1 − fn0

) + µ(n0)( fn0−1 − fn0
), n0 ≥ 1,

λ(0)( f1 − f0), n0 = 0,
(4.2)

and λ(n0), µ(n0) are given functions with respect to n0. Applying Remark 3.1 and Theo-
rem 2.1, one can get the BSDE

uN(t)

(
X(t), t

)
= uN(0)

(
X(0), 0

)
+

∫ t

0

√
2D

(
N(τ)

)
∇xuN(τ)

(
X(τ), τ

)
· dB(τ)

+
∫ t

0

∫

Z\{0}
uN(τ−)+n

(
X(τ), τ

)
−uN(τ−)

(
X(τ), τ

)
J̃
(
dτ, dn; N(τ−)

)
. (4.3)

We choose d = 3, T = 1, D0 = 5, nmin = 3, α = 1,

α(n) = λ(n) =






20 − n, 0 ≤ n < 5,√
40 − n, 5 ≤ n < 10,

30 − n, 10 ≤ n < 15,

(100 − n)/10, 15 ≤ n < 100,

0, 100 ≤ n,

β(n) = µ(n) =






n, 0 ≤ n < 10,

n − 5, 10 ≤ n < 20,√
n, 20 ≤ n < 30,

5, 30 ≤ n,

and the terminal condition

gn0
(x) =





(
10

π(n0 + 1)

) d
2

e
− 10|x|2

n0+1 , n0 = 3k + 1,

0, otherwise

(4.4)

for (n0, x) ∈ N × R
d. According to Corollary 2.1, it can be obtained that the exact solution

of (4.1) has the form

un0
(x, t) = E

[(
10

π(Nn0 ,t
T + 1)

) d
2

e
− 10|Xx,t

T
|2

N
n0,t
T

+1
I{N

n0,t
T ≡1(mod 3)}

]
. (4.5)
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We get an approximation of un0=10(x = [0, 0, 0], t = 0) using the deep BSDE method.
Fig. 4.1(a) shows the mean ± the SD of the relative error for the deep BSDE solutions for
five runs, and the “exact solution” un0=10(x = [0, 0, 0], t = 0) ≈ 0.011642 obtained from
the MCM of 1, 000, 000 random paths over 1, 000 equidistant time steps. The relative error
of 2.26% in 20, 000 iteration steps is obtained.

On the other hand, we choose the terminal condition

gn0
(x) =





1

2

(
n0 + 1

π

) d
2 (

e−|x−1|2(n0+1) + e−|x+1|2(n0+1)
)
, n0 = 2k + 1,

0, otherwise,

(4.6)

and solve the backward Fokker-Planck equation (4.1) in the 2-dimensional (d = 2) region
D = [−3, 3]× [−3, 3]. Fig. 4.2 plots the solutions and relative errors. The deep BSDE model

(a) (b)

Figure 4.1: (a) Relative errors with respect to un0=10(x = [0, 0, 0], t = 0) for 20, 000 iterations of the deep BSDE
method of the backward Fokker-Planck equations (4.1) with 50 equidistant time steps (N = 50), batch size 128,
and learning rate 0.0002. The shaded area depicts the mean ± the SD of five different runs. (b) The convergence
of the deep BSDE solution, where the blue shade represents the mean ± the SD of five runs, and the red line is
for the “exact solution” obtained by MCM.

(a) (b)

Figure 4.2: (a) Plot of φ(x|θφ) as an approximation of un0=5(x, t = 0) for the deep BSDE method. The deep
BSDE method goes through 40, 000 iterations of 1024 batch size at 50 equidistant time steps (N = 50), with
a learning rate of 0.001 for the first 20, 000 and 0.0001 for the last 20, 000 iterations. (b) Relative error of the
deep BSDE method for un0=5(x, t = 0), where the “exact solution” is obtained by the MCM.
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is trained over 40, 000 iterations, and the “exact solutions” are at a 100 × 100 uniform grid
of points on D, each obtained by the MCM of 10, 000 random samples.

4.2 Forward Fokker-Planck equation

Consider the forward Fokker-Planck equation





∂

∂t
u(n, x, t) + Lnu(n, x, t) + D(n)∇2

xu(n, x, t) = 0,

u(n, x, T) = g(n, x),
(4.7)

governing the joint probability distribution u(n, x, t) with respect to the polymer size N(t)
and polymer CM position X(t) at time t, where

Ln f (n) =

{
µ(n + 1) f (n + 1) + λ(n − 1) f (n − 1)−

(
µ(n) + λ(n)

)
f (n), n > 0,

µ(1) f (1)− λ(0) f (0), n = 0,
(4.8)

and µ(n), λ(n) are given functions with respect to n. Applying Remark 3.1 and Theo-
rem 2.1, one can get the BSDE

u
(

N(t), X(t), t
)
− u

(
N(0), X(0), 0

)

=
∫ t

0

(
α
(

N(τ)− 1
)
+ β

(
N(τ) + 1

)
− α

(
N(τ)

)
− β

(
N(τ)

))
u
(

N(τ), X(τ), τ
)

dτ

+
∫ t

0

∫

Z\{0}
u
(

N(τ−) + n, X(τ), τ
)
− u

(
N(τ−), X(τ), τ

)
J̃
(
dτ, dn; N(τ−)

)

+
∫ t

0

√
2D

(
N(τ)

)
∇xu

(
N(τ), X(τ), τ

)
· dB(τ), (4.9)

where α(n) = µ(n + 1) and β(n) = λ(n − 1) with λ(−1) = 0.
We choose d = 3, T = 0.5, D0 = 1, nmin = 3, α = 1,

λ(n) =





(20 − n)
1
3 , 0 ≤ n < 5,√

30 − n, 5 ≤ n < 10,

20 − n, 10 ≤ n < 15,

(50 − n)/10, 15 ≤ n < 50,

0, 50 ≤ n,

µ(n) =





1.5n, 0 ≤ n < 10,

n − 5, 10 ≤ n < 20,√
n − 10, 20 ≤ n < 30,

5, 30 ≤ n,

and the terminal condition

g(n, x) =

{
e−

|x|2
n+1 , n = 2k,

0, otherwise
(4.10)
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for (n, x) ∈ N × R
d. According to Corollary 2.1, it can be obtained that the exact solution

of (4.5) has the form

u(n, x, t) = E

[
e

∫ T
t c(Nn,t

τ )dτ− |Xx,t
T

|2

Nn,t
T

+1
I{Nn,t

T ≡0(mod 2)}

]
, (4.11)

where c(n) = α(n) + β(n)− α(n − 1)− β(n + 1).
Fig. 4.3(a) shows the mean ± the SD of the relative error for the deep BSDE solution

u(n = 8, x = [0, 0, 0], t = 0). The deep BSDE method achieves a relative error of 0.58% in
60, 000 iteration steps. Fig. 4.3(b) plots the mean ± the SD of the relative error for the deep
BSDE solutions {u(n = 8, x = [0, 0, 0], t), t = 0, 0.1, . . . , 0.4}, each obtained by five inde-
pendent runs, and the “exact solutions” [0.204230, 0.229959, 0.268836, 0.323641, 0.414984]
obtained by MCM with 1, 000, 000 independent random samples, respectively.

(a) (b)

Figure 4.3: (a) Relative error with respect to u(n = 8, x = [0, 0, 0], t = 0) for 60, 000 iterations of the deep BSDE
method of the forward Fokker-Planck equation (4.7) with 50 equidistant time steps (N = 50), batch size 128,
and learning rate 0.0004. The shaded area depicts the mean ± the SD of five different runs. (b) Relative error
with respect to u(n = 8, x = [0, 0, 0], t) at five time points t ∈ {0, 0.1, 0.2, 0.3, 0.4} of the forward Fokker-Planck
equation (4.7). The results are obtained after 60, 000 iterations of deep BSDE method with 0.01 time step, 128
batch size, and learning rate 0.0004. The blue line represents the mean ± the SD of five runs.

4.3 Occupation time in half-space

Define the occupation time of a particle in the positive half-space as Y(t) =
∫ t

0 U(X(τ))dτ
(U(x) = 1 for x ≥ 0 and is zero otherwise) [24, 33]. To find the distribution of occupation
times, we consider the backward Feynman-Kac equation




∂

∂t
ũn0,x0

(p, t)+Fn0
ũn0,x0

(p, t)+D(n)∇2
x0

ũn0,x0
(p, t)−ipU(x0)ũn0,x0

(p, t) = 0,

ũn0,x0
(p, T) = 1,

(4.12)

governing the function

ũn0,x0
(p, t) =

∫

R

un0,x0
(y, t)e−ipydy,
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which is the Fourier transformation of the probability density function un0,x0
(y, t) of the

polymer CM position functional Y(t) for N(0) = n0 and X(0) = x0, where Fn0
is defined

by (4.2). Applying Theorem 2.1, one can get the BSDE

ũN(t),X(t)(p, t) = ũN(0),X(0)(p, 0) + ip
∫ t

0
U
(
X(τ)

)
ũN(τ),X(τ)(p, τ)dτ

+
∫ t

0

∫

Z\{0}
ũN(τ−)+n,X(τ)(p, τ)− ũN(τ),X(τ)(p, τ) J̃

(
dτ, dn; N(τ−)

)

+
∫ t

0

√
2D

(
N(τ)

)
∇x0

ũN(τ),X(τ)(p, τ) · dB(τ). (4.13)

Here, to avoid the influence of the frequency parameter p on the stability of the scheme
when solving in the high-frequency region, letting

ūN(t),X(t)(p, t) = e−ip
∫ t

0 U(X(τ))dτũN(t),X(t)(p, t),

we convert (4.13) to the equivalent BSDE

ūN(t),X(t)(p, t)− ūN(0),X(0)(p, 0)

=
∫ t

0
e−ip

∫ τ
0 U(X(s))ds

∫

Z\{0}
ũN(τ−)+n,X(τ)(p, τ)− ũN(τ),X(τ)(p, τ) J̃

(
dτ, dn; N(τ−)

)

+
∫ t

0
e−ip

∫ τ
0 U(X(s))ds

√
2D

(
N(τ)

)
∇x0

ũN(τ),X(τ)(p, τ) · dB(τ). (4.14)

Take d = 3, T = 1, D0 = 3, nmin = 4, α = 0.5,

α(n) = λ(n) =






20 − n, 0 ≤ n < 5,√
40 − n, 5 ≤ n < 10,

30 − n, 10 ≤ n < 15,

(100 − n)/10, 15 ≤ n < 100,

0, 100 ≤ n,

β(n) = µ(n) =






n, 0 ≤ n < 10,

n − 5, 10 ≤ n < 20,√
n, 20 ≤ n < 30,

5, 30 ≤ n,

and the terminal condition becomes

ūN(t),X(t)(p, T) = e−ip
∫ T

0 U(X(t))dt. (4.15)

Combining Corollary 2.1 with Remark 3.1, one can get the stochastic representation of
(4.12) as

ũn0,x0
(p, t) = E

[
e−ip

∫ T
t U(Xx,t

τ )dτ
]

. (4.16)
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Fig. 4.4 shows the shape of the deep BSDE solution of the backward Feynman-Kac
equation (4.12) in the frequency and time domains, and the shape of the “exact solution”
obtained by MCM, where the solution un0,x0

(y, t) in the time domain is obtained by taking
numerical inverse Fourier transformation p → y of the deep BSDE solution ũn0,x0

(p, t)
in the frequency domain and the “exact solution” is obtained by simulating 1, 000, 000
independent particle trajectories.

(a) (b)

Figure 4.4: (a) The shape of the imaginary and real parts of the numerical solution ũn0=20,x0=[0,0,0](p, t = 0)

of the deep BSDE method in the interval [−40, 40]. The results are obtained by 20 independent parallel deep
BSDE methods on backward Feynman-Kac equation (4.12) trained on 512 batch size, 100 equidistant time steps
(N = 100), and 40, 000 iterations, with a learning rate of 0.001 for the first 20, 000 and 0.0001 for the last 20, 000.
These 20 models are responsible for solving the 20 equidistant interval divisions of the interval p ∈ [−40, 40].
The “exact solution” is obtained by approximating the stochastic representation of (4.16) in MCM. (b) The shape
of the solutions un0=20,x0=[0,0,0](y, t = 0) in the time domain by taking numerical inverse Fourier transformation

p → y on three different frequency domain intervals [−40, 40], [−20, 20], and [−4, 4] of the deep BSDE method
of the backward Feynman-Kac equation (4.12) and the “exact solution” obtained by the MCM.

4.4 The area under the random walk curve

An important application of the functional is the study of NMR [17]. In a typical NMR

experiment, the macroscopic measured signal can be written as E = E[eiY(t)], where

Y(t) = γ
∫ t

0 U(X(τ))dτ is the phase accumulated by each spin, γ is the gyromagnetic
ratio, U(x) is a spatially-inhomogeneous external magnetic field, and X(τ) is the trajec-
tory of each particle. NMR therefore indirectly encodes information regarding the motion
of the particles. Common choices of the magnetic field U are U(x) = x and U(x) = x2 [17].

Consider the forward Feynman-Kac equation




∂

∂t
ũ(n, x, p, t) + Lnũ(n, x, p, t) + D(n)∇2

x ũ(n, x, p, t)− ipU(x)ũ(n, x, p, t) = 0,

ũ(n, x, p, T) = g(n, x, p),
(4.17)

governing the function

ũ(n, x, p, t) =
∫

R

u(n, x, y, t)e−ipydy,
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which is the Fourier transformation of the joint probability density function u(n, x, y, t) of
the polymer particle size N(t), CM position X(t), and functional Y(t), where Ln is defined
by (4.8). Here, we consider a parabolic magnetic field U(x) = x2 and γ = 1. Applying
Theorem 2.1 and Remark 3.1, one can get the BSDE

ũ
(

N(t), X(t), p, t
)
− ũ

(
N(0), X(0), p, 0

)

= ip
∫ t

0
U
(
X(τ)

)
ũ
(

N(τ), X(τ), p, τ
)

dτ

+
∫ t

0

∫

Z\{0}
ũ
(

N(τ−) + n, X(τ), p, τ
)

− ũ
(

N(τ−), X(τ), p, τ
)

J̃
(
dτ, dn; N(τ−)

)

−
∫ t

0
c
(

N(τ)
)

ũ
(

N(τ), X(τ), p, τ
)

dτ

+
∫ t

0

√
2D

(
N(τ)

)
∇xũ

(
N(τ), X(τ), p, τ

)
· dB(τ), (4.18)

where c(n) = α(n) + β(n)− α(n − 1)− β(n + 1).
We use the same method as in Section 4.3 to avoid instability in high-frequency regions

and choose d = 3, T = 0.5, D0 = 2, nmin = 3, α = 0.5,

λ(n) =





(20 − n)
1
3 , 0 ≤ n < 5,√

30 − n, 5 ≤ n < 10,

20 − n, 10 ≤ n < 15,

(50 − n)/10, 15 ≤ n < 50,

0, 50 ≤ n,

µ(n) =





1.5n, 0 ≤ n < 10,

n − 5, 10 ≤ n < 20,√
n − 10, 20 ≤ n < 30,

5, 30 ≤ n,

and the terminal condition

ū
(

N(T), X(T), p, T
)
= e−ip

∫ T
0 U(X(t))dtg

(
N(T), X(T), p

)

=





e
− |X(T)|2

N(T)+1
−ip

∫ T
0 U(X(t))dt

, N(T) = 2k + 1,

0, otherwise.
(4.19)

Similarly, combining Corollary 2.1 with Remark 3.1, one can get the stochastic repre-
sentation of (4.17) as

ũ(n, x, p, t) = E

[
e
− |Xx,t

T
|2

Nn,t
T

+1
+
∫ T

t c(Nn,t
τ )−ipU(Xx,t

τ )dτ

I{Nn,t
T ≡1(mod 2)}

]
. (4.20)
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Fig. 4.5 shows the shape of the deep BSDE solution of the forward Feynman-Kac equa-
tion (4.17) in the frequency and time domains, where the solution u(n, x, y, t) in the time
domain is obtained by taking numerical inverse Fourier transformation p → y of the so-
lution ũ(n, x, p, t) in the frequency domain.

(a) (b)

Figure 4.5: (a) The shape of the imaginary and real parts of the numerical solution ũ(n = 7, x = [0, 0, 0], p, t = 0)
of the deep BSDE method in the interval [−10, 10]. The results are obtained by deep BSDE method on forward
Feynman-Kac equation (4.17) trained on 4096 batch size, 50 equidistant time steps (N = 50), and 80, 000
iterations, with a learning rate of 0.001 for the first 40, 000 and 0.0005 for the last 40, 000. The “exact solution”
is obtained by approximating the stochastic representation of (4.20) in MCM. (b) The shape of the solution
u(n = 7, x = [0, 0, 0], y, t = 0) in the time domain of the deep BSDE method of the forward Feynman-Kac
equation (4.17).

4.5 High-dimensional and nonlinear problems

In order to test our new algorithm’s ability to solve high-dimensional nonlinear problems,
we consider the high-dimensional Kolmogorov-Petrovsky-Piskunov equation [26] in the
polymer diffusion system, and solve this equation using our new algorithm. Consider the
nonlinear equation





∂

∂t
un0

(x, t) +Fn0
un0

(x, t) + D(n)∇2
xun0

(x, t) + un0
(x, t)− un0

(x, t)2 = 0,

un0
(x, T) = gn0

(x).
(4.21)

We choose d = 100, T = 0.5, D0 = 5, nmin = 3, α = 1,

λ(n) =






20 − n, 0 ≤ n < 5,

30 − n, 5 ≤ n < 10,

40 − n, 10 ≤ n < 15,

50 − n, 15 ≤ n < 50,

0, 50 ≤ n,

(4.22a)
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µ(n) =






2n, 0 ≤ n < 10,

n, 10 ≤ n < 20,

n/2, 20 ≤ n < 30,

7.5, 30 ≤ n,

(4.22b)

and the terminal condition

gn0
(x) =






0.5 − 0.49

(
sin

(
n0

d

∑
i=1

xi

))
, n0 = 2k + 1,

0.5 − 0.49

(
cos

(
n0

d

∑
i=1

xi

))
, n0 = 2k.

(4.23)

Fig. 4.6 shows the mean ± the SD of the relative error (a) and the result (b) for the deep
BSDE solutions of five independent runs, and the “exact solution” un0=10(x = [0, 0, · · · , 0],
t = 0) ≈ 0.620504 obtained from the branching diffusion method [16] of 100, 000 random
samples. A relative error of 0.89% is obtained in 40, 000 iterations.

(a) (b)

Figure 4.6: (a) Relative error with respect to un0=10(x = [0, 0, · · · , 0], t = 0) for 40, 000 iterations of the deep
BSDE method of the nonlinear backward Fokker-Planck equations (4.21) with 25 equidistant time steps (N = 25),
batch size 64, and learning rate 0.0004. The shaded area depicts the mean ± the SD of five different runs.
(b) Plot of the convergence of the deep BSDE method, where the blue shade represents the mean ± the SD of
five runs, and the red line is for the “exact solution” obtained by branching diffusion method [16].

5 Materials and methods

5.1 Neural network architecture

In this subsection, we briefly illustrate the architecture of our new deep BSDE method.
Fig. 5.1 shows the architecture of our new deep BSDE method. We use a neural network
φ( · |θφ) to approximate the target solution ut0

and a neural network ψ( · |θψ) to the gradi-

ent (σ⊤∇xu)(n, x, t) and state increments

δi
nu(n, x, t) := u(n + i, x, t)− u(n, x, t).
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Figure 5.1: The architecture of deep BSDE method used in this paper with N time intervals. utk
represents

the approximate result u(Ntk
, Xtk

, tk), where ut0
can be seen as a parameter θφ and can also be obtained by

a neural network φ(Nt0
, Xt0

|θφ) taking {Nt0
, Xt0

} as input, and {utk
}0<k<N is obtained by the explicit discrete

scheme (2.15) corresponding to the BSDE (2.9). The neural network ψ( · |θψ) takes (Ntk
, Xtk

, tk) as input and

outputs the gradient approximation (σT∇xu)tk
= (σT∇xu)(Ntk

, Xtk
, tk) and the state increments (δi

nu)tk
=

u(Ntk
+ i, Xtk

, tk)− u(Ntk
, Xtk

, tk).

To simplify the notations, we denote N(t) as Nt, X(t) as Xt, u(Ntk
, Xtk

, tk) as utk
, (σ⊤∇xu)

(Ntk
, Xtk

, tk) and δi
nu(Ntk

, Xtk
, tk) as (σ⊤∇xu)tk

and (δi
nu)tk

. There are three types of con-
nections in architecture:

i) (Ntk
, Xtk

, tk) → ψ( · |θψ) → (σ⊤∇xu, δi
nu)tk

is a neural network that approximates the

gradient term (σ⊤∇xu)(Ntk
, Xtk

, tk) and state increments δi
nu(Ntk

, Xtk
, tk) as described

in (2.12) and (2.13). Its parameters θψ and θφ for approximating u(Nt0
, Xt0

, t0) are the
goals we need to optimize.

ii) (utk
, (σ⊤∇xu)tk

, Btk+1
− Btk

) → utk+1
is the forward iteration, and the final output is

an approximation of u(NT , XT, T), which is characterized by the scheme (2.15) cor-
responding to the BSDE (2.9). There are no parameters to optimize in this type of
connection.

iii) ((Ntk
, Xtk

, tk), Ntk+1
− Ntk

, Btk+1
− Btk

) → (Ntk+1
, Xtk+1

, tk+1) is the forward propaga-
tion process of discretized stochastic processes Nt and Xt accompanied by the update
of time t, which is characterized by the definition of stochastic processes and their
discrete schemes. This type of connection also has no parameters to optimize.

Here, φ( · |θφ) and ψ( · |θψ) = {ψ1( · |θψ1
), ψ2( · |θψ2

)} can be designed as suitable neural
networks according to different application scenarios. We map the state (position) infor-
mation n to dmodel-dimensional features {PEk(n)}k through positional encoding method
[35], where

PE2i(n) = sin
(

n/10000
2i

dmodel

)
(5.1a)
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PE2i+1(n) = cos
(

n/10000
2i

dmodel

)
, (5.1b)

and add these high-dimensional features to the network. We choose the fully connected
neural network (FNN) with positional encoding as the approximator and Tanh (5.2) as the
activation function

Tanh(x) =
ex − e−x

ex + e−x
. (5.2)

The network structure is shown in Fig. 5.2. We approximate (n, x) 7→ (σ⊤∇xu)(n, x, t) and

(n, x) 7→ δ±n u(n, x, t) := [δ1
nu(n, x, t), δ−1

n u(n, x, t)]⊤ at each time step tk by subnetworks

(
σ⊤∇xu

)
(Ntk

, Xtk
, tk) ≈ ψ1

(
Ntk

, Xtk
|θk

ψ1

)

δ±n u(Ntk
, Xtk

, tk) ≈ ψ2

(
Ntk

, Xtk
|θk

ψ2

)
.

(5.3)

We use PyTorch [31] to implement our algorithms and open our source code for readers
to test: https://github.com/WANGH950/deepBSDEmethod.

(a) Fully connected neural network architecture (b) FNN structure with positional encoding

Figure 5.2: Neural network architecture.

5.2 Approximation effect of neural network

The accuracy of the deep BSDE method depends on the number of hidden layers. To test
this factor, we solve the reaction diffusion equation introduced in Section 4.5. We increase
the number of hidden layers from 0 to 4 with state information n and report our results in
Table 5.1. The results show that the accuracy of the deep BSDE method is improved with
the increase of the number of hidden layers of the subnetwork.

We randomly generate 20 8-th-order polynomials fn(x) to test the approximation abil-
ity of FNN with positional encoding structure. Fig. 5.3 shows the exact values of the
polynomials and the approximation results of the neural network for x ∈ [−1, 1]. We

https://github.com/WANGH950/deepBSDEmethod
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Table 5.1: The mean and SD of the relative error for the PDE in Eq. 4.21, obtained by the deep BSDE method
using FNN with positional with positional encoding of different layers as sub networks.

No. of hidden layers

Relative err 0 1 2 3 4 5

Mean,% 2.25 1.27 0.75 0.63 0.56 0.56

SD 0.0017 0.0032 0.0039 0.0032 0.0044 0.0024

Figure 5.3: FNN with positional encoding structure approximation results for 20 8-th-order polynomials.

use a 3-layer, 128-width FNN with positional coding to approximate polynomials fn(x) ≈
fn(x|θ), and the values of each polynomial at 100 equidistant grid points are used as the
training set, and the results are obtained after 20, 000 iterations with a learning rate of
0.0001.
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6 Discussion

In this paper, we introduce a class of polymer dynamics accompanied by polymeriza-
tion and depolymerization reactions, and derive the corresponding Fokker-Planck and
Feynman-Kac equations, which are a class of infinite-dimensionally coupled systems. Fur-
ther, we extend the deep BSDE method to solve such equations and demonstrate the ef-
fectiveness of the algorithms through extensive numerical experiments.

In reality, there are many cases in polymer systems that need to be modeled by com-
posite stochastic processes [8,10], and we have only discussed one relatively simple linear
case. We believe that our method can also handle different types of linear coupling equa-
tions by constructing the corresponding process N(t).

For the model in this paper, we have not yet given a complete analysis of the deep
BSDE method. It is not difficult to obtain that the deep BSDE method in this paper essen-
tially transforms the solution of PDE (1.1) into the solution of its corresponding forward-
backward stochastic differential equations (FBSDEs)





X(t) = X(0) +
∫ t

0
µ
(

N(s), X(s), s
)

ds +
∫ t

0
σ
(

N(s), X(s), s
)

dB(s),

Y(t) = Y(T) +
∫ T

t
f
(
s, X(s), N(s), Y(s), Z(s)

)
ds −

∫ T

t
Z(s)⊤dB(s)

−
∫ T

t

∫

Z\{0}
U(s, n) J̃

(
ds, dn; N(s−)

)
,

(6.1)

where {Y(s), Z(s), U(s, n)} is unknown stochastic processes. Therefore, in order to obtain
a complete deep BSDE method, we need to theoretically analyze the properties of FBSDEs
(6.1). In addition, we also need to conduct numerical analysis:

(1) Prove that the functions that need to be approximated using neural networks belong
to the right function class and bound their norms in that function class.

(2) Estimate the time discretization error.

(3) Adapt the analysis of supervised learning problems applicable to the current setting
and give the convergence rate estimate of the numerical solutions [11, 15, 19].

All of these are also what we intend to study further in the future.

Appendix A. Proof of Lemma 3.1

Proof. Assuming that the polymer has only one polymerization (or depolymerization) re-
action in the time interval [t, t + ∆t], ∆t ≪ 1, it can be divided into two cases. When n > 0,
we have

u(n, s, t + ∆t) = µn+1∆tu
(
n + 1, s − ∆tD(n + 1), t

)

+ λn−1∆tu
(
n − 1, s − ∆tD(n − 1), t

)

+ (1 − µn∆t − λn∆t)u
(
n, s − ∆tD(n), t

)
+ o(∆t). (A.1)
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Doing Fourier transform s → p on both sides of (A.1) leads to

ũ(n, p, t + ∆t) = µn+1∆teip∆tD(n+1)ũ(n + 1, p, t) + λn−1∆teip∆tD(n−1)ũ(n − 1, p, t)

+ (1 − µn∆t − λn∆t)eip∆tD(n)ũ(n, p, t) + o(∆t)

= µn+1∆tũ(n + 1, p, t) + λn−1∆tũ(n − 1, p, t)− (µn + λn)∆tũ(n, p, t)

+ ũ(n, s, t) + ipD(n)∆tũ(n, p, t) + o(∆t). (A.2)

Therefore,

1

∆t

(
ũ(n, p, t + ∆t)− ũ(n, p, t)

)

= µn+1ũ(n + 1, p, t) + λn−1ũ(n − 1, p, t)

− (µn + λn)ũ(n, p, t) + ipD(n)ũ(n, p, t) + o(∆t). (A.3)

Letting ∆t → 0, we have

∂

∂t
ũ(n, p, t) = Lnũ(n, p, t) + ipD(n)ũ(n, p, t). (A.4)

We do the inverse Fourier transform p → τ and get forward equation (3.5). When N(t)=0,
the polymer can only undergo polymerization. Therefore, after the same derivation, the
case of n = 0 can be proved. The proof is complete.

Appendix B. Proof of Lemma 3.2

Proof. Assuming that the polymer has at most one polymerization (or depolymerization)
process in the time interval [0, t + ∆t], ∆t ≪ 1, it can also be divided into two cases. When
n > 0, we have

un0
(s, t + ∆t) = µn0

∆tun0−1

(
s − ∆tD(n0), t

)
+ λn0

∆tun0+1

(
s − ∆tD(n0), t

)

+ (1 − µn0
∆t − λn0

∆t)un0

(
s − ∆tD(n0), t

)
+ o(∆t). (B.1)

Doing Fourier transform s → p on both sides of Eq. B.1 results in

ũn0
(p, t + ∆t) = µn0

∆teip∆tD(n0)ũn0−1(p, t) + λn0
∆teip∆tD(n0)ũn0+1(p, t)

+ (1 − µn0
∆t − λn0

∆t)eip∆tD(n0)ũn0
(p, t) + o(∆t)

= µn0
∆tũn0−1(p, t) + λn0

∆tũn0+1(p, t)− (µn0
+ λn0

)∆tũn0
(p, t)

+ ũn0
(p, t) + ipD(n0)∆tũn0

(p, t) + o(∆t). (B.2)

Therefore,

1

∆t

(
ũn0

(p, t + ∆t)− ũn0
(p, t)

)

= µn0
ũn0−1(p, t) + λn0

ũn0+1(p, t)
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− (µn0
+ λn0

)ũn0
(p, t) + ipD(n0)∆tũn0

(p, t) + o(∆t). (B.3)

Letting ∆t → 0, we have

∂

∂t
ũn0

(p, t) = Fn0
ũn0

(p, t) + ipD(n0)ũn0
(p, t). (B.4)

We do the inverse Fourier transform p → τ and get backward equation (3.7). When
N(0) = 0, the polymer can only undergo polymerization. Therefore, after the same deriva-
tion, the case of n0 = 0 can be proved. The proof is complete.

Appendix C. Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1. With the help of (3.13), using Eq. 3.5 leads to

∂

∂t
u(n, x, t) =

∂

∂t

∫ ∞

0
P̃(x, τ)u(n, τ, t)dτ

=
∫ ∞

0
P̃(x, τ)

∂

∂t
u(n, τ, t)dτ

=
∫ ∞

0
P̃(x, τ)

[
Lnu(n, τ, t)− D(n)

∂

∂τ
u(n, τ, t)

]
dτ

= Ln f (n, x, t)− D(n)
∫ ∞

0
P̃(x, τ)

∂

∂τ
u(n, τ, t)dτ

= Ln f (n, x, t)− D(n)

[
P̃(x, τ)u(n, τ, t)|τ=∞

τ=0 −
∫ ∞

0
u(n, τ, t)

∂

∂τ
P̃(x, τ)dτ

]
.

With the relation ∂P̃(x, τ)/∂τ = ∇2
x P̃(x, τ), we get Eq. (3.16).

Proof of Theorem 3.2. The proof uses Lemma 3.2 and Eq. 3.13, and the procedure of proof is
similar to that of Theorem 3.1, so it is omitted.

Appendix D. Proof of Theorems 3.3 and 3.4

Proof of Theorem 3.3. Respectively taking Fourier transform to u(n, x, y, t) with n→l, x→k,
y → p, we have

ũ(l, k, p, t) = E

[
e−ilN(t)e−ikX(t)e−ipY(t)

]
.

The difference of the joint PDF at different times in Fourier space satisfies

ũ(l, k, p, t + ∆t)− ũ(l, k, p, t)

= E

[
e−ilN(t+∆t)e−ikX(t+∆t)e−ipY(t+∆t)

]
− E

[
e−ilN(t)e−ikX(t)e−ipY(t)

]

= E

[
e−ilN(t+∆t)e−ik(X(t)+

√
2D(N(t))(B(t+∆t)−B(t)))e−ip(Y(t)+U(X(t))∆t)

]
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− E

[
e−ilN(t)e−ikX(t)e−ipY(t)

]

= ∆tE
[
λ
(

N(t)
)

e−i(N(t)+1)e−ik(X(t)+
√

2D(N(t))(B(t+∆t)−B(t)))e−ip(Y(t)+U(X(t))∆t)
]

+ ∆tE
[

µ
(

N(t)
)

e−i(N(t)−1)e−ik(X(t)+
√

2D(N(t))(B(t+∆t)−B(t)))e−ip(Y(t)+U(X(t))∆t)
]

+
[(

1 − λ
(

N(t)
)

∆t − µ
(

N(t)
)

∆t
)
e−i(N(t))e−ik(X(t)+

√
2D(N(t))(B(t+∆t)−B(t)))

× e−ip(Y(t)+U(X(t))∆t)
]
− E

[
e−ilN(t)e−ikX(t)e−ipY(t)

]
,

where we have used the definitions of N(t), X(t), and Y(t).
Noting that

e−ik
√

2D(N(t))(B(t+∆t)−B(t)) = 1−ik
√

2D
(

N(t)
)(

B(t+∆t)−B(t)
)
−k2D

(
N(t)

)
∆t+o(∆t),

e−ipU(X(t))∆t = 1 − ipU
(
X(t)

)
∆t + o(∆t),

we have

ũ(l, k, p, t + ∆t)− ũ(l, k, p, t)

= ∆tE
[

λ(N(t))e−i(N(t)+1)e−ikX(t)e−ipY(t)
]

+ ∆tE
[

µ
(

N(t)
)

e−i(N(t)−1)e−ikX(t)e−ipY(t)
]

− k2∆tE
[

D
(

N(t)
)

e−i(N(t))e−ikX(t)e−ipY(t)
]

− ip∆tE
[

U
(
X(t)

)
e−i(N(t))e−ikX(t)e−ipY(t)

]

− ∆tE
[(

λ(N(t)
)
+ µ

(
N(t)

))
e−iN(t)e−ikX(t)e−ipY(t)

]
+ o(∆t).

Dividing both sides by ∆t, taking the inverse Fourier transform with l → n, k → x, and
letting ∆t → 0, we can get the forward Feynman-Kac equation (3.19), where the derivation
of the n = 0 case is similar and omitted.

Proof of Theorem 3.4. Taking Fourier transform to un0,x0
(y, t) with y → p, we have

ũn0,x0
(p, t) = E

[
e−ipY(t)|n0,x0

]
.

The difference of the PDF at different times in Fourier space satisfies

ũn0,x0
(p, t + ∆t)− ũn0,x0

(p, t)

= E

[
e−ipY(t+∆t)|n0,x0

]
− E

[
e−ipY(t)|n0,x0

]

= E

[
e−ip(U(x0)∆t+Y(t)|N(∆t),X(∆t))

]
− E

[
e−ipY(t)|n0,x0

]

= λ(n0)∆tE
[

e−ipU(x0)∆te
−ipY(t)|

n0+1,x0+
√

2D(n0)B(∆t)
]
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+ µ(n0)∆tE
[

e−ipU(x0)∆te
−ipY(t)|

n0−1,x0+
√

2D(n0)B(∆t)
]

+
(
1 − λ(n0)∆t − µ(n0)∆t

)
E

[
e−ipU(x0)∆te

−ipY(t)|
n0,x0+

√
2D(n0)B(∆t)

]

− E

[
e−ipY(t)|n0,x0

]
.

Taking Fourier transform on both sides with x0 → k0 and omitting the higher-order terms
of ∆t, there exists

ũn0,k0
(p, t + ∆t)− ũn0,k0

(p, t) ≈ µ(n0)∆tũn0−1,k0
(p, t) + λ(n0)∆tũn0+1,k0

(p, t)

−
(
µ(n0) + λ(n0)

)
∆tũn0,k0

(p, t)− k2
0D(n0)∆tũn0,k0

(p, t)

− ip∆tFx0→k0
{U(x0)ũn0,x0

(p, t)}.

Dividing both sides by ∆t, taking the inverse Fourier transform with k0 → x0, and letting
∆t → 0, one can get the backward Feynman-Kac equation (3.20), where the derivation of
the n0 = 0 case is similar and omitted.
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