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ARTICLE INFO ABSTRACT
Keywords: The partial differential equations (PDEs) for jump process with Lévy measure have wide appli-
Jump process cations. When the measure has fat tails, it will bring big challenges for both computational cost
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Deep learning

and accuracy. In this work, we develop a deep learning method for high-dimensional PDEs re-
lated to fat-tailed Lévy measure, which can be naturally extended to the general case. Building
on the theory of backward stochastic differential equations for Lévy processes, our deep learning
method avoids the need for neural network differentiation and introduces a novel technique to
address the singularity of fat-tailed Lévy measures. The developed method is used to solve four
kinds of high-dimensional PDEs: the diffusion equation with fractional Laplacian; the advective
diffusion equation with fractional Laplacian; the advective diffusion reaction equation with frac-
tional Laplacian; and the nonlinear reaction diffusion equation with fractional Laplacian. The
parameter f in fractional Laplacian is an indicator of the strength of the singularity of Lévy mea-
sure. Specifically, for g € (0, 1), the model describes super-ballistic diffusion; while for g € (1,2),
it characterizes super-diffusion. In addition, we experimentally verify that the developed algo-
rithm can be easily extended to solve fractional PDEs with finite general Lévy measures. Our
method achieves a relative error of O(1073) for low-dimensional problems and ©O(10~2) for high-
dimensional ones. We also investigate three factors that influence the algorithm’s performance:
the number of hidden layers; the number of Monte Carlo samples; and the choice of activation
functions. Furthermore, we test the efficiency of the algorithm in solving problems in 3D, 10D,
20D, 50D, and 100D. Our numerical results demonstrate that the algorithm achieves excellent per-
formance with deeper hidden layers, a larger number of Monte Carlo samples, and the Softsign
activation function.

1. Introduction

With the rapid development of science and technology, an increasing number of novel phenomena are being observed. The motion
of particles is no exception, e.g., Brownian yet non-Gaussian, strong anomalous diffusion, etc, especially in biological field [1-4].
Currently, it is widely recognized that non-Brownian motion is much more popular than Brownian one. Roughly speaking, according
to the relationship between the variance and time ¢ of a stochastic process, anomalous diffusion can be classified as sub-diffusion,
normal diffusion, and super-diffusion [5]. Additional types of diffusion include ballistic diffusion, super-ballistic diffusion, polymer
diffusion, turbulent diffusion, localization, etc.
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$X(t)$


\begin {equation*}\mathbb {E}\left [e^{i(\xi ,X(t))}\right ] = e^{t\phi (\xi )}\end {equation*}


\begin {equation*}\phi (\xi ) = i(\mu ,\xi ) - \frac {1}{2}(\xi ,a\xi ) + \int _{\mathbb {R}^d\setminus \{0\}}\left [e^{i(\xi ,y)} - 1 - i(\xi ,y)\chi _{0<\left |y\right |<r}(y) \right ]\nu (dy).\end {equation*}


$\mu \in \mathbb {R}^d$


$a\in \mathbb {R}^d\times \mathbb {R}^d$


$r\in \mathbb {R}^+$


$\nu $


$\mathbb {R}^d\setminus \{0\}$


$\nu $


$r=0$


$t$


$\xi $


\begin {equation*}\label {eq2.3} \begin {aligned} \frac {\partial u(x,t)}{\partial t} + \mu \cdot \nabla u(x,t) = \frac {1}{2}{\rm Tr}\left (a^T\left ({\rm Hess}_x\right )u(x,t)\right ) + \int _{\mathbb {R}\setminus \{0\}}\left [u(x-y,t)-u(x,t) + y^T\nabla u(x,t)\chi _{0<|y|<r}(y)\right ]\nu (dy) \end {aligned}\end {equation*}


$u(x,0) = g(x)$


$\nu \sim |x|^{-\beta -d}$


$a=0$


$a\neq 0$


\begin {equation}\label {eq2.4} \frac {\partial u(x,t)}{\partial t} + (\mu \cdot \nabla u)(x,t) - (-\Delta )^{\beta / 2}u(x,t) + f\left (t,x,u(x,t)\right )= 0\end {equation}


$u(x,T) = g(x)$


$u:\mathbb {R}^{d}\times [0,T]\rightarrow \mathbb {R}$


$\mu :\mathbb {R}^{d}\times [0,T]\rightarrow \mathbb {R}^{d}$


$f:[0,T]\times \mathbb {R}^{d}\times \mathbb {R}\rightarrow \mathbb {R}$


$-(-\Delta )^{\beta /2}$


\begin {equation}\label {eq2.5} -(-\Delta )^{\beta /2} u(x,t) = \int _{\mathbb {R}^d\setminus \{0\}} \left [u(x-y,t)-u(x,t) + y^T \nabla u(x,t)\chi _{0<|y|<r}(y)\right ]\nu _{\beta }(dy),\end {equation}


$\beta \in (0,2)$


$\nu _\beta (dy) = c_{\beta ,d} \frac {1}{|y|^{\beta +d}}dy$


\begin {equation*}\label {eq2.6} c_{\beta ,d} = \frac {2^\beta \Gamma \left (\frac {d+\beta }{2}\right )}{\pi ^{d/2}\left |\Gamma \left (-\frac {\beta }{2}\right )\right |}.\end {equation*}


$\nu _{\beta }(dy)$


$|y|\rightarrow 0$


\begin {equation*}\label {eq2.7} \begin {aligned} -(-\Delta )^{\beta /2} u(x,t) = \int _{0<|y|<r}\left [u(x-y,t)-u(x,t)+y^T\nabla u(x,t)\right ] \nu _{\beta }(dy) + \int _{|y|\geq r}\left [u(x-y,t)-u(x,t)\right ] \nu _\beta (dy). \end {aligned}\end {equation*}


$u(x-y,t)$


\begin {align*}\label {eq2.8} &\int _{0<|y|<r}\left [u(x-y,t)-u(x,t)+y^T\nabla u(x,t)\right ] \nu _{\beta }(dy)\\ &\quad =\frac {1}{2}\int _{0<|y|< r}y^T{\rm Hess}_xu(x-\theta y,t)y\nu _{\beta }(dy)\\ &\quad \approx \frac {1}{2}\int _{0<|y|<r}y^T{\rm Hess}_xu(x,t)y\nu _{\beta }(dy)\\ &\quad =\frac {1}{2}\int _{0<|y|<r}{\rm Tr}\left [y^T{\rm Hess}_xu(x,t)y\right ]\nu _{\beta }(dy)\\ &\quad =\frac {1}{2}\int _{0<|y|<r}{\rm Tr}\left [{\rm Hess}_xu(x,t)yy^T\right ]\nu _{\beta }(dy)\\ &\quad =\frac {1}{2}{\rm Tr}\left [{\rm Hess}_xu(x,t)\int _{0<|y|<r}c_{\beta ,d}\frac {yy^T}{|y|^{\beta +d}}dy\right ]\\ &\quad =\frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\Delta u(x,t)\end {align*}


$\theta \in (0,1)$


\begin {equation*}\label {eq2.9} k_{\beta ,d,r} = \frac {\pi ^{d/2}}{\Gamma \left (\frac {d}{2}+1\right )}\frac {r^{2-\beta }}{2-\beta }.\end {equation*}


\begin {equation*}\label {eq2.10} -(-\Delta )^{\beta /2} u(x,t) \approx \frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\Delta u(x,t) + \int _{|y|\geq r}[u(x-y,t)-u(x,t)] \nu _\beta (dy),\end {equation*}


\begin {equation}\label {eq2.11} \begin {aligned} \frac {\partial u(x,t)}{\partial t} + (\mu \cdot \nabla u)(x,t) + \frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\Delta u(x,t) + \int _{|y|\geq r}\left [u(x-y,t)-u(x,t)\right ] \nu _\beta (dy) + f\left (t,x,u(x,t)\right )= 0. \end {aligned}\end {equation}


$L^2$


\begin {equation}\label {L2error} \|e(\cdot ,t)\|_{L^2(\mathbb {R}^d)} \leq L_2(t)r^{3-\beta },\end {equation}


$L^\infty $


\begin {equation}\label {L2inf} \|e\|_{L^{\infty }(\mathbb {R}^d)}(t)\leq L_{\infty }(t)r^{3-\beta },\end {equation}


$B(t)$


$L(t)$


$\frac {c_{\beta ,d}}{\widetilde {c}_{\beta ,d,r}}$


$\widetilde {c}_{\beta ,d,r}\frac {1}{|y|^{\beta +d}}$


$|y|\geq r$


$\nu (dy) = \lambda \nu (y)dy$


$\lambda $


$\nu (-y)$


\begin {equation}\label {eq2.12} dX(t) = \mu (X(t),t)dt + \sqrt {c_{\beta ,d}k_{\beta ,d,r}}dB(t) + dL(t).\end {equation}


$X(t)$


$X(t)$


$u(x,t) \in \mathbb {C}^2(\mathbb {R}^d)\times \mathbb {C}^1([0,\infty ])$


\begin {equation*}\begin {aligned} &u(X(t),t) - u(X(0),0)\\ &\ \ = \int _0^t \left (\frac {\partial u(X(s), s)}{\partial t} + \frac {1}{2} c_{\beta ,d}k_{\beta ,d,r}\Delta u(X(s),s) + (\mu \cdot \nabla u)(X(s),s)\right )ds + \sqrt {c_{\beta ,d} k_{\beta ,d,r}}\int _0^t \nabla u(X(s),s)\cdot dB(s)\\ &\qquad + \int _0^t \int _{|y|\geq r} \left [u(X(s-) + y, s) - u(X(s-), s)\right ] J(dy\times ds), \end {aligned}\end {equation*}


$J$


$L(t)$


$u(x,t)$


$X(t)$


$(u(X(t),t),\sqrt {c_{\beta ,d}k_{\beta ,d,r}}\break \nabla u(X(t),t),u(X(t-)+y)-u(X(t-)))$


\begin {equation}\label {eq2.13} \begin {aligned} Y(t) - g(X(T)) = \int _t^Tf\left (s,X(s),Y(s)\right )ds - \int _t^TZ(s)\cdot dB(s) - \int _t^T \int _{|y|\geq r}U(s-,y)\widetilde {J}(dy\times ds), \end {aligned}\end {equation}


$\widetilde {J}(dy\times dt) = J(dy\times dt) - \lambda \nu (-y)dydt$


$u(x,t) = \mathbb {E}\left [e^{c(T-t)}g(X(T))| X(t)=x\right ]$


$f(t,x,y)=cy$


$c$


$(Y(t),Z(t),U(t,y))$


$(Y(t),Z(t),U(t,y))$


$u(x,t)$


$t$


$x$


$\theta _u$


$(u(X(s),s),\sqrt {c_{\beta ,d}k_{\beta ,d,r}}\nabla u(X(s),s),u(X(s-)+y,s)-u(X(s-),s))$


$t\leq s\leq T$


$u(X(T),T)$


$\sqrt {c_{\beta ,d}k_{\beta ,d,r}}\nabla u(X(s),s)$


$u(X(s-)+z)-u(X(s-))$


$\nabla u(x,s)\approx \psi (x,s|\theta _{\nabla u})$


$\theta _{\nabla u}$


$u(x+y,s)-u(x,s)\approx \psi (x,y,s|\theta _{Ju})$


$\theta _{Ju}$


$[t,T]: t = t_0<t_1<\ldots < t_{N-1} < t_N = T$


\begin {equation}\label {eq2.14} X(t_{k+1}) = X(t_{k}) + \mu (X(t_k),t_k)\Delta t_k + \sqrt {c_{\beta ,d}k_{\beta ,d,r}}\Delta B(t_k) + \Delta L(t_k)\end {equation}


\begin {equation}\label {eq2.15} \begin {aligned} u(X(t_{k+1}),t_{k+1}) &= u(X(t_k),t_k) - f(t_k,X(t_k),u(X(t_k),t_k))\Delta t_k + \sqrt {c_{\beta ,d}k_{\beta ,d,r}}\nabla u(X(t_k),t_k)\cdot \Delta B(t_k)\\ &\quad + u(X(t_k)+\Delta L(t_k),t_k) - u(X(t_k),t_k) - \int _{|y|\geq r}\left [u(X(t_k)-y,t_k) - u(X(t_k),t_k)\right ]\nu _{\beta }(dy)\Delta t_k, \end {aligned}\end {equation}


$\Delta t_k = t_{k+1}-t_k$


$\Delta B(t_k) = B(t_{k+1})-B(t_k)$


$\Delta L(t_k) = L(t_{k+1})-L(t_k)$


$\{t_k\}_k$


$\{B(t_k)\}_k$


$\{L(t_k)\}_k$


$\{X(t_k)\}_k$


\begin {equation*}\hat {u}\left (\left \{t_k,X(t_k),B(t_k),L(t_k)\right \}_k| \theta =\left \{\theta _u,\theta _{\nabla u},\theta _{Ju}\right \}\right ).\end {equation*}


\begin {equation}\label {eq2.16} Loss(\theta ) = \mathbb {E}\left [\left |g(X(T)) - \hat {u}\left (\left \{t_k,X(t_k),B(t_k),L(t_k)\right \}_k| \theta \right )\right |^2\right ].\end {equation}


\begin {equation}\label {mc-int} \int _{|y|\geq r}f(y)\nu _{\beta }(dy)\approx \frac {c_{\beta ,d}}{\widetilde {c}_{\beta ,d,r}}\frac {1}{M}\sum _{i=1}^{M}f(y_i)\end {equation}


$y_i\sim \widetilde {c}_{\beta ,d,r}\frac {1}{|y|^{\beta +d}}$


$i=1,2,\ldots , M$


$U(s-,y)=u(X(s-)+y)-u(X(s-))$


$u(x+y)-u(x)$


$U(s,y) = u(X(s)+y,s)-u(X(s),s)$


$u(x,s)\approx \widetilde {\psi }(x,s|\theta _{Ju})$


\begin {equation}\label {eq2.17} \begin {aligned} u(x+y,s)-u(x,s)&\approx \psi (x,y,s|\theta _{Ju})\\ &= \widetilde {\psi }(x+y,s|\theta _{Ju}) - \widetilde {\psi }(x,s|\theta _{Ju}). \end {aligned}\end {equation}


$u(x+y)-u(x)$


$u(x+y)-u(x)$


\begin {equation}\label {eq2.18} \psi (x,y,t|\theta _{Ju}) = \sum _{i=1}^{P}\psi _i(x,t|\theta ^x_{Ju})\psi _i(y|\theta ^y_{Ju})\tanh (|y|)\end {equation}


$P\in \mathbb {N}$


$\tanh (|y|)$


$u(x+0,t)-u(x,t) = 0$


$y=0$


\begin {equation}\label {eq2.19} \begin {aligned} &\int _{|y|\geq r}\left [u(X(t_k)-y,t_k) - u(X(t_k),t_k)\right ]\nu _{\beta }(dy)\\ &\ \ \approx \frac {c_{\beta ,d}}{\widetilde {c}_{\beta ,d,r}}\frac {1}{M}\sum _{i=1}^{M}\left [u(X(t_k)-y_i,t_k) - u(X(t_k),t_k)\right ]\\ &\ \ \approx \frac {c_{\beta ,d}}{\widetilde {c}_{\beta ,d,r}}\frac {1}{M}\sum _{i=1}^{M}\sum _{j=1}^{P}\psi _j(X(t_k),t_k|\theta ^x_{Ju})\psi _j(y_i|\theta ^y_{Ju})\tanh (|y_i|)\\ &\ \ = \frac {c_{\beta ,d}}{\widetilde {c}_{\beta ,d,r}}\sum _{j=1}^{P}\psi _j(X(t_k),t_k|\theta ^x_{Ju})\frac {1}{M}\sum _{i=1}^{M}\psi _j(y_i|\theta ^y_{Ju})\tanh (|y_i|), \end {aligned}\end {equation}


$\theta $


\begin {equation}\label {eq3.1} \frac {\partial u(x,t)}{\partial t} + \frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\Delta u(x,t) + \int _{|y|\geq r}\left [u(x-y,t)-u(x,t)\right ] \nu _\beta (dy) = 0\end {equation}


$u(x,T) = g(x)$


$1$


$u(x,t) = x$


$t\in [0,T]$


$x=1,\,t=0,\,\beta =1.5,\,r=0.1,\,T=1,\,N=100,\,M=10^2$


$M=10^4$


$P=128$


$128$


$3$


$2\times 10^{4}$


$5\times 10^{-4}$


$0.5$


$5\times 10^3$


$u(1,0)$


$u(1,0)=1$


$Y(t)=u(X(t),t)$


$Y(t)=u(X(t),t)$


$u(1,0)=1$


$2\times 10^4$


$5$


$Y(t)$


$u(X(t),t)$


$\mathcal {O}(10^{-3})$


$3$


$100$


$3$


$x=[0,0,0]^T,\,P=128$


$128$


$4$


$100$


$x=[0,0,\ldots ,0]^T,\,P=256$


$512$


$4$


$t=0,\,\beta =0.7,\,r=0.1,\,T=1,\,N=100,\,M=10^4$


$g(x)=10e^{-|x|}$


$10^5$


$5\times 10^{-4}$


$0.5$


$2\times 10^4$


$3$


$100$


$10^5$


$3$


$100$


$2.0133\, (d=3)$


$0.1558\,(d=100)$


\begin {equation*}u(x,0) = \mathbb {E}\left [10e^{-|X(T)|}|X(0) = x\right ].\end {equation*}


$0.35\%$


$3$


$6.10\%$


$100$


$2\times 10^4$


\begin {equation}\label {eq3.2} \begin {aligned} \frac {\partial u(x,t)}{\partial t} + \nabla u(x,t) + \frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\Delta u(x,t) + \int _{|y|\geq r}\left [u(x-y,t)-u(x,t)\right ] \nu _\beta (dy) = 0 \end {aligned}\end {equation}


$u(x,T) = g(x)$


$3$


$x=[0,0,0]^T,\,\beta =0.9,\,r=0.1,\,P=128,$


$128$


$4$


$100$


$x=[-1,-1,\ldots ,-1]^T,\,\beta =1.5,\,r=0.5,\,P=256$


$512$


$4$


$t=0,\,T=1,\,N=100,\,M=10^4$


$g(x)=\frac {10\left (1+\sin \left (|x|\right )\right )}{1+|x|^2}$


$10^5$


$5\times 10^{-4}$


$0.5$


$2.5\times 10^4$


$3$


$100$


$10^5$


$3$


$100$


$2.3560\,(d=3)$


$0.0909\,(d=100)$


\begin {equation*}u(x,0) = \mathbb {E}\left [\frac {10\left (1+\sin \left (|X(T)|\right )\right )}{1+|X(T)|^2}|X(0) = x\right ].\end {equation*}


$0.66\%$


$3$


$3.75\%$


$100$


$2\times 10^4$


$3$


$6\times 10^4$


$100$


\begin {equation}\label {eq3.3} \begin {aligned} \frac {\partial u(x,t)}{\partial t} + \nabla u(x,t) + \frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\Delta u(x,t) + \int _{|y|\geq r}\left [u(x-y,t)-u(x,t)\right ] \nu _\beta (dy) + \lambda u(x,t) = 0 \end {aligned}\end {equation}


$u(x,T) = g(x)$


$3$


$x=[0,0,0]^T,\,\beta =1.1,\,r=0.1,\,P=128$


$128$


$4$


$100$


$x=[0,0,\ldots ,0]^T,\,\beta =1.6,\,r=0.5,\,P=256$


$512$


$4$


$t=0,\,\lambda =1,\,T=1,\,N=100,\,M=10^4$


$g(x)=\frac {1+\sin \left (|x|\right )}{1+|x|^2}$


$10^5$


$5\times 10^{-4}$


$0.5$


$2\times 10^4$


$3$


$100$


$10^5$


$3$


$100$


$0.6606\,(d=3)$


$0.0121\,(d=100)$


\begin {equation*}u(x,0) = \mathbb {E}\left [e^{\lambda T}\frac {1+\sin \left (|X(T)|\right )}{1+|X(T)|^2}|X(0) = x\right ].\end {equation*}


$0.21\%$


$3$


$1.67\%$


$100$


$10^4$


\begin {equation}\label {eq3.4} \begin {aligned} \frac {\partial u(x,t)}{\partial t}& + \frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\Delta u(x,t) + \int _{|y|\geq r}\left [u(x-y,t)-u(x,t)\right ] \nu _\beta (dy) + u(x,t) - u(x,t)^2 = 0 \end {aligned}\end {equation}


$u(x,T) = g(x)$


$3$


$x=[0,0,0]^T,\,\beta =1.7,\,r=0.2,\,P=128$


$128$


$4$


$100$


$x=[0,0,\ldots ,0]^T,\,\beta =1.9,\,r=0.5,\,P=256$


$512$


$4$


$t=0,\,T=0.5,\,N=50,\,M=10^4$


$g(x)=0.5-0.4\sin \left (|x|/10\right )$


$10^5$


$2\times 10^{-4}\,(d=3)$


$4\times 10^{-5}\,(d=100)$


$0.5$


$2.5\times 10^4$


$3$


$100$


$10^5$


$3$


$100$


$0.5546\,(d=3)$


$0.2628\,(d=100)$


$0.39\%$


$3$


$0.27\%$


$100$


$5\times 10^3$


$3$


$2\times 10^4$


$100$


\begin {equation}\label {eq3.5} \frac {\partial u(x,t)}{\partial t} = \int _{\mathbb {R}^d}\left [u(x-y,t)-u(x,t)\right ] \nu (dy)\end {equation}


$u(x,0) = u_0(x)$


$u$


$x_0\sim u_0$


$\lambda $


$\Delta X\sim \nu $


$P = 128,\,T = 1,\,N = 100,\,M = 10^4$


$u_0(x) = e^{-|x|^2/2}/\sqrt {2\pi }$


$\nu (dy)=\lambda \nu (y)dy$


$\nu (y)=1,\,y\in [0, 1]$


$\lambda =5$


$\nu (y)=\frac {e^{-|y-1|^2}}{\sqrt {2\pi }}$


$\lambda = 3$


$\nu (y)=e^{-y},\,y>0$


$\lambda =1$


$\nu (y)=\left \{\begin {aligned} &1/3, y=1,\\ &2/3, y=-2 \end {aligned}\right .$


$\lambda =5$


$10^4$


$5 \times 10^{-4}$


$10^6$


$10^4$


$5 \times 10^{-4}$


$10^6$


$64$


$0$


$6$


$100$


$\rm Softsign$


\begin {equation*}{\rm Softsign}(x) = \frac {x}{1+|x|}.\end {equation*}


$0$


$2$


$6$


$3$


$4$


$\rm Softsign$


$10^0$


$10^3$


$100$


$100$


$\rm Softsign$


$\Delta L(t_k)$


$100$


$d = 3, 10, 20, 50, 100$


$d = 3$


$P = 64$


$128$


$4$


$3< d < 50$


$P = 128$


$256$


$4$


$d\geq 50$


$P = 256$


$512$


$4$


$\beta = 1.3,\, r = 0.5$


$5 \times 10^{-4}$


$0.5$


$2 \times 10^{4}$


$\beta = 1.9,\, r = 0.5$


$4 \times 10^{-5}$


$d \geq 50$


$2 \times 10^{-4}$


$d < 50$


$0.5$


$2.5 \times 10^{4}$


\begin {equation*}\|X-\hat {X}\|_X+\|Y-\hat {Y}\|_Y+\|Z-\hat {Z}\|_Z + \|U-\hat {U}\|_U\leq C\left [\Delta t + \mathbb {E}\left [|g(\hat {X}(T))-\hat {Y}(T)|^2\right ]\right ],\end {equation*}


$(X,Y,Z,U)=(X(t),Y(t),Z(t),U(t,y))$


$(\hat {X},\hat {Y},\hat {Z},\hat {U})=(\hat {X}(t),\hat {Y}(t),\hat {Z}(t),\hat {U}(t,y))$


$\|\cdot \|_X,\,\|\cdot \|_Y,\,\|\cdot \|_Z,$


$\|\cdot \|_U$


$\Delta t$


$\mathbb {E}\left [|g(\hat {X}(T))-\hat {Y}(T)|^2\right ]$


$\mathcal {O}(10^{-3})$


$\mathcal {O}(10^{-2})$


$\rm Softsign$


$T_0 = 0$


$T_n = \inf \{ t > T_{n-1} ; |X(t) - X(T_{n-1})| \neq 0 \}.$


$t > 0$


\begin {align*}u(X(t), t) - u(X(0), 0) &= \sum _{j=0}^{\infty } \left [u(X(t \wedge T_{j+1}), t \wedge T_{j+1}) - u(X(t \wedge T_j), t \wedge T_j) \right ]\\ &=\sum _{j=0}^{\infty } \left [u(X(t \wedge T_{j+1}-), t \wedge T_{j+1}) - u(X(t \wedge T_j), t \wedge T_j) \right ] + \sum _{j=0}^{\infty } \left [u(X(t \wedge T_{j+1}), t \wedge T_{j+1}) - u(X(t \wedge T_{j+1}-), t \wedge T_{j+1}) \right ] \\ &= \int _0^t \left ( \frac {\partial u(X(s), s)}{\partial t} + \frac {1}{2} c_{\alpha , d}k_{\alpha , d, r} \Delta u(X(s), s) + (\mu \cdot \nabla u)(X(s), s) \right ) ds + \sqrt {c_{\alpha , d} k_{\alpha , d, r}}\int _0^t \nabla u(X(s), s) \cdot dB(s)\\ &\quad + \int _0^t \int _{|y|\geq r} \left [ u(X(s-) + y, s) - u(X(s-), s) \right ] J(dy \times ds).\end {align*}


$u(X(s),s)$


$s=t$


$s=T$


\begin {align*}u(X(t), t) - g(X(T)) &= - \int _t^T \left (\frac {\partial u(X(s), s)}{\partial t} + \frac {1}{2} c_{\alpha , d}k_{\alpha , d, r} \Delta u(X(s), s) + (\mu \cdot \nabla u) (X(s), s) \right ) ds - \sqrt {c_{\alpha , d} k_{\alpha , d, r}}\int _t^T \nabla u(X(s), s)\cdot dB(s) \\ &\quad - \int _t^T \int _{|y|>r} \left [u(X(s-) - y, s) - u(X(s-), s) \right ] J(dy \times ds)\\ &= \int _t^T f(s,X(s),u(X(s),s))ds - \sqrt {c_{\alpha , d} k_{\alpha , d, r}}\int _t^T \nabla u(X(s), s)\cdot dB(s) \\ &\quad - \int _t^T \int _{|y|>r} \left [u(X(s-) + y, s) - u(X(s-), s) \right ] \widetilde {J}(dy \times ds).\end {align*}


$u,\tilde {u}\in H^3(\mathbb {R}^d)\times C^1([0,T])$


$\exists C\geq 0$


$|f(t,x,u(x,t)) - f(t,x,\tilde {u}(x,t))| \leq C|e(x,t)|$


$|\nabla \cdot \mu (x,t)|\leq C,\,\forall (t,x)\in [0,T]\times \mathbb {R}^d$


$e(x,t)=u(x,t)-\tilde {u}(x,t)$


\begin {align*}\left |R_r[u](x,t)\right |&= \left |\int _{|y|< r}\left [u(x-y,t)-u(x,t)+y^T\nabla u(x,t)\right ]\nu _{\beta }(dy) - \frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\Delta u(x,t)\right |\\ &= \left |\int _{|y|<r}\frac {-\frac {1}{6}u^{(3)}(x,t)(y,y,y)+\mathcal {O}(|y|^4)}{|y|^{\beta +d}}dy\right |\\ &\leq \tilde {C}|u^{(3)}(x,t)|\int _{|y|<r}|y|^{3-\beta -d}dy\\ &= \tilde {C}|u^{(3)}(x,t)|S_{d-1}\int _0^rl^{2-\beta }dl\\ &= \bar {C}|u^{(3)}(x,t)|r^{3-\beta }.\end {align*}


$L^2$


$t\to T-t$


\begin {equation*}\begin {aligned} \frac {\partial e(x,t)}{\partial t} &= (\mu \cdot \nabla e)(x,t) + \frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\Delta e(x,t) + \int _{|y|\geq r}\left [e(x-y,t)-e(x,t)\right ] \nu _\beta (dy) + f\left (t,x,u(x,t)\right ) - f\left (t,x,\tilde {u}(x,t)\right ) + R_r[u](x,t). \end {aligned}\end {equation*}


$e$


$\mathbb {R}^d$


\begin {equation*}\begin {aligned} \frac {1}{2}\frac {d}{dt}\|e(\cdot ,t)\|^2_{L^2(\mathbb {R}^d)} &= \int _{\mathbb {R}^d}e(x,t)(\mu \cdot \nabla e)(x,t)dx + \frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\int _{\mathbb {R}^d}e(x,t)\Delta e(x,t)dx + \int _{\mathbb {R}^d}e(x,t)\int _{|y|\geq r}\left [e(x-y,t)-e(x,t)\right ] \nu _\beta (dy)dx\\ &\quad + \int _{\mathbb {R}^d}e(x,t)\left [f\left (t,x,u(x,t)\right ) - f\left (t,x,\tilde {u}(x,t)\right )\right ]dx + \int _{\mathbb {R}^d}e(x,t)R_r[u](x,t)dx\\ &= \text {I + II + III + IV + V}. \end {aligned}\end {equation*}


\begin {flalign*}\text {I} = &\int _{\mathbb {R}^d}e(x,t)(\mu \cdot \nabla e)(x,t)dx \\ = &\,\frac {1}{2}\int _{\mathbb {R}^d}\mu (x,t)\cdot \nabla [e(x,t)]^2dx\\ = &-\frac {1}{2}\int _{\mathbb {R}^d}\nabla \cdot \mu (x,t)[e(x,t)]^2dx\leq C\|e(\cdot ,t)\|^2_{L^2(\mathbb {R}^d)},\\ \text {II} =&\, \frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\int _{\mathbb {R}^d}e(x,t)\Delta e(x,t)dx = -\frac {1}{2}c_{\beta ,d}k_{\beta ,d,r}\int _{\mathbb {R}^d} |\nabla e(x,t)|^2dx \leq 0,\\ \text {III} = &\int _{\mathbb {R}^d}e(x,t)\int _{|y|\geq r}\left [e(x-y,t)-e(x,t)\right ] \nu _\beta (dy)dx\\ = &\frac {1}{2}\int _{\mathbb {R}^d}\int _{|y|\geq r}\left [-\left [e(x-y,t)\right ]^2 + 2e(x-y,t)e(x,t) - \left [e(x,t)\right ]^2\right ] \nu _\beta (dy)dx\\ = & -\frac {1}{2}\int _{\mathbb {R}^d}\int _{|y|\geq r}\left [e(x-y,t)-e(x,t)\right ]^2\nu _\beta (dy)dx\leq 0,\\ \text {IV} = &\int _{\mathbb {R}^d}e(x,t)\left [f\left (t,x,u(x,t)\right ) - f\left (t,x,\tilde {u}(x,t)\right )\right ]dx\\ \leq &\,\int _{\mathbb {R}^d}|e(x,t)||f\left (t,x,u(x,t)\right ) - f\left (t,x,\tilde {u}(x,t)\right )|dx\\ \leq &\,C\|e(\cdot ,t)\|^2_{L^2(\mathbb {R}^d)},\\ &\text {and}\\ \text {V} = &\int _{\mathbb {R}^d}e(x,t)R_r[u](x,t)dx\leq \|R_r[u](\cdot ,t)\|_{L^2(\mathbb {R}^d)}\|e(\cdot ,t)\|_{L^2(\mathbb {R}^d)}.\end {flalign*}


\begin {equation*}\frac {d}{dt}\|e(\cdot ,t)\|^2_{L^2(\mathbb {R}^d)} \leq 4C\|e(\cdot ,t)\|^2_{L^2(\mathbb {R}^d)} + 2\|R_r[u](\cdot ,t)\|_{L^2(\mathbb {R}^d)}\|e(\cdot ,t)\|_{L^2(\mathbb {R}^d)}.\end {equation*}


$\|e(\cdot ,t)\|^2_{L^2(\mathbb {R}^d)}\neq 0,\,\forall t\in [0,T]$


\begin {equation*}\frac {d}{dt}\|e(\cdot ,t)\|_{L^2(\mathbb {R}^d)} \leq 2C\|e(\cdot ,t)\|_{L^2(\mathbb {R}^d)} + \|R_r[u](\cdot ,t)\|_{L^2(\mathbb {R}^d)}.\end {equation*}


$L_2(t) = \frac {\bar {C}}{2C}\left (e^{2Ct}-1\right )\sup \limits _{0\leq s\leq t}\|u(\cdot ,s)\|_{H^3(\mathbb {R}^d)}.$


$u,\tilde {u}\in C^3(\mathbb {R}^d)$


$L^{\infty }$


$x^*(t)$


$e$


$t$


$e(x^*(t),t)\geq 0$


\begin {align*}\frac {de(x^*(t),t)}{dt} &= \nabla e(x^*(t),t)\cdot dx^*(t) + \frac {\partial e(x^*(t),t)}{\partial t}\\ &\leq f(t,x^*(t),u(x^*(t),t)) - f(t,x^*(t),\tilde {u}(x^*(t),t)) + R_r[u](x^*(t),t)\\ &\leq Ce(x^*(t),t) + |R_r[u](x^*(t),t)|,\end {align*}


$\nabla e(x^*(t),t)=0$


$\Delta e(x^*(t),t)\leq 0$


\begin {equation*}\int _{|y|\geq r}\left [e(x^*(t)-y,t)-e(x^*(t),t)\right ] \nu _\beta (dy)\leq 0.\end {equation*}


$x^*(t)$


$e$


$e(x^*(t),t) < 0$


\begin {equation*}\frac {d(-e(x^*(t),t))}{dt}\leq C(-e(x^*(t),t)) + |R_r[u](x^*(t),t)|.\end {equation*}


\begin {equation*}\frac {d\|e(\cdot ,t)\|_{L^{\infty }(\mathbb {R}^d)}}{dt}\leq C\|e(\cdot ,t)\|_{L^{\infty }(\mathbb {R}^d)} + \|R_r[u](\cdot ,t)\|_{L^{\infty }(\mathbb {R}^d)}.\end {equation*}


$L_{\infty }(t) = \frac {\bar {C}}{C}\left (e^{Ct}-1\right )\sup \limits _{0\leq s\leq t}\|u(\cdot ,s)\|_{C^3(\mathbb {R}^d)}.$
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Jump process is a class of important microscopic models to describe diffusion. Compound Poisson process belongs to Lévy process,
and is also a jump process [6]. Generally, the governing equations for the probability density functions of the statistical observables
of the jump process involve nonlocal operators, and if the equation is discussed in the bounded domain Q, the boundary conditions
should be specified in R?\Q [7]. The compound Poisson process can describe both normal diffusion and super-diffusion, in fact, it can
even characterize the ballistic diffusion and super-ballistic diffusion, which depend on the choice of the probability measure of the
jump length. When the second moment of the jump length is bounded, macroscopiclly, the compound Poisson process behaves like
Brownian motion (its scaling limit is Brownian motion [8]). In this case, the operators of the corresponding macroscopic equations are
nonlocal but non-singular. However, when the probability measure of jump length has fat tails, like |x| "¢, the nonlocal operators
have singular kernel; and the compound Poisson process respectively describes super-diffusion for g € (1,2), ballistic diffusion for
B = 1, and super-ballistic diffusion for g € (0, 1). This paper focuses on the jump length with distribution |x|#~¢.

There have been extensive studies of traditional numerical methods for solving the governing macroscopic equation of the com-
pound Poisson process with a fat-tailed Lévy measure, including the finite difference method [9], the finite element method [10], etc.
The main challenges of the traditional numerical methods come from the fractional Laplacian operator of the macroscopic equation,
which affects the regularity of the solution of the equation, hugely increases both the memory and computational costs, and makes
it hard to program even for three-dimensional case. The main objective of this paper is to treat high-dimensional cases, like one
hundred dimension. So, we turn to deep learning method.

When neural network is used to solve partial differential equations (PDEs), it is expected to conquer the curse of dimensionality
occuring in the traditional methods [11]. Several frameworks have been proposed for solving PDEs using neural networks. One
approach is Physics-Informed Neural Networks (PINNs), which takes the sampling points in the solving domain and its boundary,
then constructs the loss function based on the residual of the PDE [12-15]. The second one is to use the energy functional of the
PDE:s as the loss function [16]. The third one is for the PDEs which don’t have the energy functional, like Petrov-Galerkin framework,
which uses the adversarial network [17]. In the above three frameworks, neural network is taken as the approximation function of
the solution of the PDE. The idea of the fourth one is much different from the first three, which has the stronger sense of machine
learning; first, one needs to find a backward stochastic differential equation (BSDE) driven by a stochastic process, which has the
“same” solution as the PDE, then uses the sample trajectories generated by the stochastic process to train the BSDE [18]. Based on
BSDE theory, this framework can obtain solutions at arbitrary target positions (or regions) in high-dimensional Cauchy problems
without imposing boundary constraints. The major advantages of BSDE over PINN on these unbounded problems are that BSDE is
more theoretically grounded and that BSDE requires lower-order derivatives making it computational efficient.

The theoretical results on BSDE provide the foundation of the deep learning method under the framework of BSDE [19], which
is developed to solve semilinear parabolic differential equations [18]. More recently, the idea is used to solve the equation with
nonlocal operator [20]; and the operator is the generator of Lévy process describing normal diffusion, implying that the used Lévy
measure rapidly tends to zero when |x| - . The process related to the equation discussed in this paper is Lévy process characteriz-
ing super-diffusion, ballistic diffusion, and super-ballistic diffusion, which means the corresponding Lévy measure has fat tails. This
paper aims to develop a deep learning method for high-dimensional PDEs related to fat-tailed Lévy measure, which can be naturally
extended to the general case. Based on the theory of BSDE for Lévy process, in developing the deep learning method, the differen-
tiation of neural network is circumvented, and the technique is introduced to treat the singularity of the fat-tailed Lévy measure.
The developed method is used to solve four kinds of high-dimensional PDEs: the diffusion equation with fractional Laplacian; the
advective diffusion equation with fractional Laplacian; the advective diffusion reaction equation with fractional Laplacian; the non-
linear reaction diffusion equation with fractional Laplacian. The parameter f§ in fractional Laplacian is an indicator of the strength
of the singularity of Lévy measure. Specifically, for g € (0, 1), the model describes super-ballistic diffusion, whereas for g € (1,2), it
characterizes super-diffusion. The developed deep learning method reaches the relative error of ®(10~3) in low-dimensional prob-
lems, and ©O(1072) in high-dimensional problems. Our deep learning method is influenced by three factors: the number of hidden
layers; the number of Monte Carlo samples; and activation functions. The numerical results demonstrate that the algorithm achieves
optimal stability with deeper hidden layers, a larger number of Monte Carlo samples, and the Softsign activation function. More im-
portantly, the developed algorithm is verified to effectively solve diffusion equations with fractional Laplacians in various dimensions
and can be easily extended to solve equations with finite general Lévy measures. We have open-sourced the code for readers to test:
https://github.com/WANGH950/Fat-tailedDeepLearning.

The rest of this paper is organized as follows. In Section 2, we introduce the linear and nonlinear PDEs with fractional Laplacian
and present the overall methodology of deep learning method. Section 3 reports the numerical results for the 3-dimensional and
100-dimensional equations and shows the performance of the developed method. We conclude the paper with some discussions in
the last section.

2. Methodology

The Lévy process X (¢) is a stochastic process with stationary and independent increments, which has an exponential characteristic
function

E[e/€XD)] = ¢4
with

$(&) = i(u &) - %(&am / [ — 1 = i(&, 1) oy < 3 V(D).
R\ {0}

2
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Here, y € R, a € RY x RY, r € R*, and v is a Lévy measure on R? \ {0}. In the case that v is finite, one can take r = 0. By doing the
derivative of time r and Fourier inverse transform of £, one can get the corresponding advective diffusion equation
du(x, 1)
ot

+ u - Vu(x,t) = %Tr(aT (Hessx)u(x, t)) + /\( } [u(x -y, 1) —u(x, 1)+ yTVu(x, t))(o<|y|<r()’)] v(dy)
R\{0

with initial condition u(x,0) = g(x). This paper focuses on the jump process with fat-tailed Lévy measure v ~ |x|#~¢ and the corre-
sponding equations (hence let a = 0), and the method considered can be naturally extended to the general form (a # 0 and arbitrary
Lévy measures). Next, we will present the specific form of the equation, deal with the singularity of the Lévy measure with fat tails,
derive the corresponding BSDE, and develop the deep learning algorithm.

2.1. PDE;s with fat-tailed Lévy measure

Consider the general form of the fractional Laplacian equation
ou(x, 1)
ot
with the terminal condition u(x,T) = g(x). Here u : R? x [0,T] — R is the unknown function, x : R¢ x [0,7] — R? and f : [0,T] X
R? x R — R are given functions, and —(—A)?/2 is fractional Laplacian operator defined as

+ (- Vu)(x,t) — (—A)ﬂ/zu(x, H+ f(t,x,u(x,1)=0 (@8]

—(=D)Pu(x, 1) = / " [ux = y. 1) = u(x, 1) + YT Vu(x, 0 o<1y <)) vp (@), (2)
Rd\ {0}
where § € (0,2) and v4(dy) = ¢z 4 Wd y is the considered fat-tailed Lévy measure with
pr( 48
2 F( ! )
2d/2

g

In order to address the singularity of v4(dy) as |y| — 0, we need to do some subtle processing on the fractional Laplacian operator.
Specifically, we decompose (2) into two parts

~(=8u(x,1) = /

0<|y|<r

[u(x =y 8) — uCx, 1) + yT Vu(x, t)] vg(dy) + / [u(x = y,1) — u(x,D)]vp(dy).

|yI>r

Then, one can do Taylor’s expansion for u(x — y, ) in the first term

/ [u(x =y ) = u(x, 1) + yT Vu(x, t)] vp(dy)
0<|y|<r

=1 / yTHessxu(x —0y.0)yvp(dy)
2 0<|y|<r

1 / ¥ Hess u(x, )yvy(dy)
0<|yl<r

Q

2

= l/ Tr[yTHessxu(x,t)y]vﬂ(dy)
2 0<|y|<r

= l/ Tr [Hess u(x, 1)yy" | vs(dy)
2 0<|y|<r

T

1 yy
= ETr [Hessxu(x, 1) Cpd _|y|ﬂ+d dy

0<|y|<r
1
=3 kg g, Bu(x, 1)

with some 6 € (0, 1), where
. N
pdr — _n
r(Zr1)27

Finally, we can approximate fractional Laplacian operator as

—(=D)PPu(x,f) » %cﬁ,d kg, Au(x,1) + / [u(x =y, 1) — u(x, )]vg(dy),

[y|>r
and (1) can be approximately written as

du(x, 1)

o + (u - Vu)(x, 1) + %cﬁ’dkﬁ’d’,Au(x, H+ / [u(x — y, 1) —u(x,D]vp(dy) + f (1, x, u(x, 1)) = 0. 3

[yI>r

The difference between the solutions of (1) and (3) is shown in Appendix C; see the L? estimate (C.1) and L™ one (C.2).

3
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To go further, we first introduce a class of stochastic process driven by the Brownian motion B(f) and compound Poisson process

L(r) with the intensity ;ﬂ and the jump length distribution ¢, rlylﬁ for |y| > r (for the finite measure in the case v(dy) = Av(y)dy,
p.d.r o
we take the intensity as 4 and the jump length distribution as v(—y)). The considered process satisfies

dX () = u(X@),t)dt + WdB(t) +dL(1). 4)
Driven by the stochastic process X(#), the following result holds (The proof is provided in Appendix A).
Lemma 1. If X(¢) is a stochastic process satisfying (4), then for any u(x,t) € C2(R?) x C!([0, o)), Ité’s formula is given by

u(X(®),1) — u(X(0),0)

[ ou(X(s), 1 /"
= /0 <W + Ecﬁ’dkﬁ’d%rAu(X(s), s)+ (1 - Vu)(X(s), s))ds + cﬂ,dkﬂ,d,r/() Vu(X(s),s) - d B(s)

t
+ / / [u(X(s=) + y,5) —u(X(s—), 9)]J (dy X ds),
0 Jlylzr

where J is the Poisson random measure of L(t).
By combining Lemma 1 and (3), one can immediately get the BSDE that the solution of (3) satisfies (See the proof in Appendix B).

Theorem 1. Let u(x,t) be the solution of the Eq. (3) and X(t) be a stochastic process satisfying (4). Then (u(X(?), D\ epakpar
Vu(X (1),1),u(X (t—) + y) — u(X (t—))) is the solution of the BSDE

T T T
Y@ -gXT) = / (s, X(s),Y(s)ds — / Z(s) - dB(s) - / / U(s— »)J(dyx ds), (5)
t t t |

y|=r
where J(d y X dt) = J(dy x dt) — Av(—y)dydt is the compensated Poisson random measure.

This theorem can be used to get the exact expression of the solution for the linear case, i.e., u(x,t) = [E[e”(T")g(X (THX(@) = x]
when f(t,x,y) = cy with constant c. Consequently, this expectation can be approximated by Monte Carlo simulation to obtain the
“exact” solution of the equation. The solution of BSDE (5) is a triplet (Y (), Z(¢), U(t, y)), and its existence and uniqueness has been
discussed in [21]. The mathematical theory of BSDE ensures that one can get the solution of the PDE (3) directly by solving the
BSDE (5), and (Y (¢), Z(¢), U(t, y)) satisfies the relationship between the solution of the PDE and its difference. In the next step, we will
present a suitable neural network architecture to solve the BSDE (5).

2.2. Neural network architecture and approximation

Our interest is to get u(x, t) at fixed time ¢ and position x, which can be approximated by a parameter 6,. Then, one can regard the
BSDE (5) with a triplet of the solution (u(X(s), s), \/cs gkp 4, V(X (s), $),u(X(s=) + y,5) —u(X(s—),s)) (t < s < T) as the way to obtain
the approximation of the terminal value u(X(T'), T), which can be achieved when 1/c; sk 4, Vu(X(s), s) and u(X (s—) + z) — u(X (s—))
are known. Specifically, we first use a neural network to approximate Vu(x, s) ~ y(x, s|0y,) with parameters 6y,, and another neural
network to approximate u(x + y, s) — u(x, s) ® w(x, y, s|0,,) with parameters 6,,. Then one can use the simple Euler scheme for the
partition of the time interval [¢,T] : t =1, <t} < ... <ty_; <ty =T to discrete the stochastic Eqs. (4) and (5) as

X(tp1) = X W) + u(X @), 1AL + [ epakg g - AB(E) + AL(t,) (6)

and

WXty )ty 1) = w(X (8, 1) = [t X (0. u(X (1), )AL, + /g akpa V(X (1).1;) - AB(t;)
)
+u(X(ty) + AL(t), 1) — u(X(2), 1) — / [u(X (1) = . 1) — u(X (1), 1) vp(dy) Aty

[ylzr

where Aty =1, — 1, AB(t;) = B(t,,1) — B(t}), and AL(t;) = L(t;,;) — L(7;). Finally, we take the discrete time {r,}, and the ran-
domly generated paths { B(t;)},, {L(t})},, and {X(#,)}, as the input data of the neural network, and use the scheme (7) to get the
approximation of the terminal value

a({1e X, By, L) 1,10 = {0,,, 05,0, }).

The difference from the given terminal condition can be used to construct the loss function
. 2
Loss(0) = E (g(X(T))—u({rk,X(tk),B(zk), L(rk)}kw)‘ ) (8)

The largest computational cost of the aforementioned algorithm arises from the last integral term in the numerical scheme (7),
which can be efficiently approximated by using Monte Carlo integration

M
N~ Spa 1
TOVvdy) ~ AT ;f(y,-) ©)

[yl>r



K. Arif, G. Xi, H. Wang et al. Journal of Computational Physics 541 (2025) 114327

Fractional Laplacian PDEs with fat-tailed Lévy measure Approximation PDEs Stochastic process driven by Brownian motion and

Compound Poisson process

du(x, t) ) N _ dX(t) = u(X(6), )dt + |cpakpardB(t) + dL(t).
5 (- V) (x,£) — (=) 2u(x,0) + f(t,x,u(x, 1) = 0. % e Tw @D + %Cﬁ,dkﬁ,d,rAu(xr 0 .
—(=2)P2u(x,t) + f [u(x —y,8) —ulx, Olvg (dy) + f(t, x,ulx, 1)) = 0 :
Iylar .

= el =50 - w0 + Y PuC Oxocy<r O] @) ’
R\{0} B
Sub-neural network approximation \ N
u(x, t) = 6y, Vu(x, t) = P(x, t|0p,), ulx + y,t) —ulx, t) = w(x,y,t|91u) " . . lr ° ° ”
¥
Forward-backward stochastic differential equations
dX(t) = p(X (), )dt + [cg akpardB(t) + dL(D).

Y(©) - g(X(1)
T T T N

:f f(s,x(s),v(s))ds—f z(s)dﬁ(s)—f f U(s—, ) (dy x ds).
t t t Jlyl2r

!

Deep learning algorithm

s e W

2(t),U(to, ML), 2(),U(t2,0L(1)), Z(t-1), U(tw-1, AL(tw-1)),
f U(to,y)vp(dy) f U@y | | T J’ Ulty-1,y)vp(dy) B
Iyl=r Iylzr Iylzr

T T |
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— L(t1) = L(to) e — L(tn-1) = L(tn-2) — L(tn) = L(tn-1)

Fig. 1. The processing flow of the developed deep learning algorithm.

ulx +y) —u(x)

Fig. 2. The first structure for approximating u(x + y) — u(x).

with independent and identically distributed random samples y; ~ ¢ 4, W, i=1,2,..., M combining with the following two neural
network structures for approximating U (s—, y) = u(X(s—) + y) — u(X (s—)).

The first structure (see Fig. 2) is inspired by the relationship U (s, y) = u(X(s) + y, s) — u(X(s), s), thus one can use a neural network
to approximate u(x, s) &~ y(x, s|6;,) and calculate the residual directly

u(x +y,s) —u(x,s) ® y(x,y,s0;,)
T Ju N (1 O)
=y (x+y,5105,) —w(x,s|0;,).

The second one (see Fig. 3) is a simplified version of the tensor neural network [22], and we approximate u(x + y) — u(x) by the

structure

,
Wiy, 110,,) = Y wi(x, 1165w, (v16,) tanh(|y])

i=1

(1)
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Fig. 3. The second structure (tensor decomposition) for approximating u(x + y) — u(x).

for given P € N. Here, we multiply the final result by tanh(|y|) to ensure the structure of the approximated function u(x + 0,7) — u(x, 1) =
0 at y = 0. This tensor decomposition structure facilitates the high-dimensional numerical integration, such that

/| ‘ [u(X (1) = y. 1) — w(X (1), 1)] vp(dy)
ylzr

Q
IR
=
%
S
M=

[1(X (1) = yi. 1) = u(X (1), 1,)]

o
>
& |3
i
i

12)

Q

|-
M=
M-~

Wi (X (1), 1107w (v;16% ) tanh(|y;|)

o
:ml
= I3
S

i
<

ii

i & M
EL, Z v, 11605, ~ 20103t
which makes the last term of the scheme (7) be computed only once in all iterations. Compared with the method in (10), which
requires calculations at each iteration step, this method significantly reduces computational and memory costs. After all, one can
use stochastic gradient descent (SGD) algorithm to optimize the parameters §. The Adam optimizer [23] is used in the numerical
experiments conducted in this paper. The processing flow of the algorithm discussed above is shown in Fig. 1, and the pseudocode is
shown in Algorithm 1.

3. Numerical results

In this section, we will present some numerical results to validate the efficiency of the algorithm introduced in the previous section.
Specifically, we solve four kinds of high-dimensional PDEs: the diffusion equation with fractional Laplacian; the advective diffusion
equation with fractional Laplacian; the advective diffusion reaction equation with fractional Laplacian; and the nonlinear reaction
diffusion equation with fractional Laplacian. In addition, we also test the performance of the developed algorithm in solving fractional
equations with generalized Lévy measures, and investigate the factors influencing the algorithm’s accuracy and its performance
through extensive numerical experiments.

3.1. Diffusion equations

We begin with a representative type of equation, namely, diffusion equations with fractional Laplacian. The corresponding ap-
proximation version has the form
du(x,t) 1

or + Ecﬁ,dkﬁ,d,,Au(x, 1+ /|y|>r [u(x —y,t) — u(x, t)]vﬁ(dy) =0 (13)

with a given terminal condition u(x,T) = g(x).
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Algorithm 1 The deep learning algorithm for solving fractional Laplacian equations with fat-tailed Lévy measure.

Input: Parameter 6,, neural networks y(-|6y,) and y(-|6,,), maximum number of iterations N/, time ¢, position x, the partition of the
time interval [,T] : t =1y <t; < ... <ty_; <ty =T, Monte Carlo sampling number M, and learning rate «;
Output: 6,;
1: Initialize step = 1;
2: while step < N do
3: Initialize X (¢)) = x, u(X(ty),1y) = 6,;
Generate Monte Carlo sample points {y; }f‘i ¥
for k from 0 to N — 1 do
Generate AB(t;), AL(t;);
Vu(X (), 1)) < w(X (1), 1410v,);
u(X (1) + AL(t,). 1) — u(X (). 1) < w(X (), AL, 1.10,,);

Egs. (10) or (12)
Jiypor 1K @) = 3.1 = (X 1), 1)) v(dy) —— (yr (X (1), 31 110,012

© ® N9 R

Eq. (7)
u(X ()t + 1) <q—A1k, AB(t), u(X (@), ty), Vu(X (@), ty),
u(X () + AL(ty), t,) —u(X (@), 1),

/‘ [M(X(fk) =y 1) —u(X (1), ’k)] vp(dy);
y|>r

11: X(tep) MAtk,AB(zk), AL(ty), X (ty);
12: end for
Eq. (8) .
13: Loss(0) ———g(X(T), a({ty, X (1), B(t), L(t)},10);

SGD algorithm
14: 0 —0O,a

15: step < step + 1;
16: end while
17: return 6,.

To evaluate the accuracy of the algorithm, we first consider a 1-dimensional case with an exact solution u(x, ) = x, where ¢t € [0, T].
We choose the following parameters: x=1,1=0, f#=1.5,r=0.1, T =1, N = 100, M = 10? (for approximation method (10)), M =
10* (for approximation method (11)), P = 128, and subnetworks with a width 128 and 3 hidden layers. The final result is obtained
after 2 x 10* iterations, with an initial learning rate of 5 x 10~* that decays by a factor of 0.5 every 5 x 10? steps. Fig. 4 illustrates
the deep learning approximation results, the relative errors with respect to the exact solution u(1,0) = 1 (using two different jump
approximation methods (10) and (11)) over 2 x 10* iterations, and the comparison between the 5 BSDE trajectories Y(¢) and the
true path u(X(¢),7) after training. It can be observed that both methods achieve sufficient accuracy rapidly. Our algorithm produces
a relative error of ©¥(1073) and effectively simulates long-distance jumps. To reduce memory and computational costs, we employ
method (11) as the residual approximation in the subsequent numerical examples.

We further evaluate the performance of our algorithm in solving 3-dimensional and 100-dimensional problems. For the 3-
dimensional case, we choose x = [0,0,0]7, P = 128, and subnetworks with a width of 128 and 4 hidden layers. For the 100-dimensional
case, we choose x = [0,0,...,0]”, P =256, and subnetworks with a width of 512 and 4 hidden layers. The common parameters are set
ast=0,$=07,r=01,T=1 N =100, M = 10%, and the terminal condition g(x) = 10e~*!. The final results are obtained after 10°
iterations, with an initial learning rate of 5 x 10~ that decays by a factor of 0.5 every 2 x 10* steps. Fig. 5 displays the approximate
solutions and the relative errors for our deep learning method, where the “exact” solutions 2.0133 (d = 3) and 0.1558 (d = 100) can be
obtained by approximating the stochastic representation

u(x,0) = E[10e” ¥ X (0) = x].

Our method achieves the relative error of 0.35% for the 3-dimensional problem and 6.10% for the 100-dimensional problem. It converges
rapidly (within fewer than 2 x 10* iterations) and demonstrates strong robustness after convergence.

3.2. Advective diffusion equations

The advective diffusion equation describes the probability density of random particles diffusing in a non-stationary medium and
has a wide range of applications. In this section, we evaluate the performance of our algorithm for this case. Specifically, we consider
the diffusion in a constant velocity field, and the corresponding equations can be expressed as

du(x,t)

5 + Vu(x,t) + %cﬂ,dkﬂ,d,,Au(x, 1+ / [u(x — y, 1) — u(x, Dlvg(dy) = 0 14

|yl>r

with a given terminal condition u(x,T) = g(x).
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Fig. 4. Visualization of the effectiveness of deep learning methods for solving one-dimensional problem. (a) Plot of the exact solution u(1,0) and the
approximate solutions obtained by deep learning as a function of the number of iteration steps. The red line denotes the exact solution u(1,0) = 1,
while the blue and green curves represent the approximate solutions using deep learning methods with approximation methods (10) and (11),
respectively. (b) Plot of the relative error of the approximate solutions compared to the exact solution as a function of the number of iteration
steps, using deep learning methods with approximation methods (10) and (11). (c¢) Depiction of five independent paths Y (r) = u(X(¢), t) obtained by
the deep learning method with approximation method (10); (d) Depiction of five independent paths Y (f) = u(X(7), t) obtained by the deep learning
method with approximation method (11), where the blue curve indicates the exact solution, the red dashed curve represents the approximate
solution by deep learning, and the bold lines denote the jumps. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

For the 3-dimensional case, we choose x = [0,0,0]7, f = 0.9, r = 0.1, P = 128, and subnetworks with a width of 128 and 4 hidden
layers. For the 100-dimensional case, we choose x = [-1,—1,...,—1]7, f = 1.5, r = 0.5, P = 256, and subnetworks with a width of 512

and 4 hidden layers. The common parameters are setast =0, T =1, N = 100, M = 10*, and the terminal condition g(x) = %

The final results are obtained after 107 iterations, with an initial learning rate of 5 x 10~* that decays by a factor of 0.5 every 2.5 x 10*
steps. Fig. 6 displays the approximate solutions and the relative errors as a function of the number of iterations, where the “exact”
solutions 2.3560 (d = 3) and 0.0909 (d = 100) can be computed by approximating the stochastic representation

10(1 + sin (| X(T

u(x,0) =E Mp{(o) =x|.
L+X(M)?

The developed algorithm achieves the relative error of 0.66% for the 3-dimensional problem and 3.75% for the 100-dimensional
problem. It converges rapidly (within fewer than 2 x 10* iterations for the 3-dimensional problem and fewer than 6 x 10* iterations
for the 100-dimensional problem) and demonstrates strong robustness after convergence.

8
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Fig. 5. (a) Relative error for the 3-dimensional (green) and 100-dimensional (blue) nonlinear problems (13) for 10° iterations of the developed
algorithm. (b) Convergence behavior of the developed algorithm for the 3-dimensional (green) and 100-dimensional (blue) nonlinear problems (13),
where the “exact” solutions (red and orange) are computed using the Monte Carlo method.(For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 6. (a) Relative error for the 3-dimensional (green) and 100-dimensional (blue) nonlinear problems (14) over 10° iterations of the proposed
algorithm. (b) Convergence behavior of the proposed algorithm for the 3-dimensional (green) and 100-dimensional (blue) nonlinear problems (14),
where the “exact” solutions (red and orange) are obtained using the Monte Carlo method. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

3.3. Adbvective reaction diffusion equations

The advective reaction-diffusion equation extends the advective diffusion equation by incorporating a reaction term (source term),
which models a non-mass-conserved system. In such systems, random particles may be generated or consumed either by the system
itself or due to external influences. We consider the linear equation

du(x, 1)

ot + Vu(x,t) + %cﬁ,dkﬂ,d,,Au(x, 1)+ / [u(x — y,t) — u(x, t)]vﬁ(dy) + Au(x,t) =0 (15)

|y|zr
with a given terminal condition u(x,T) = g(x).

For the 3-dimensional case, we choose x = [0,0,0]7, g = 1.1, r = 0.1, P = 128, and subnetworks with a width of 128 and 4 hidden
layers. For the 100-dimensional case, we choose x = [0,0,...,0]”, = 1.6, » = 0.5, P = 256, and subnetworks with a width of 512 and

4 hidden layers. The common parameters are setast =0, A= 1, T = 1, N = 100, M = 10*, and the terminal condition g(x) = %}f:le)

The final results are obtained after 10° iterations, with an initial learning rate of 5 x 10~* and decays by a factor 0.5 every 2 x 10*

9
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Fig.7. (a) Relative error for the 3-dimensional (green) and 100-dimensional (blue) nonlinear problems (15) over 10° iterations of the proposed deep
learning method. (b) Convergence behavior of the proposed algorithm for the 3-dimensional (green) and 100-dimensional (blue) nonlinear problems
(15), where the “exact” solutions (red and orange) are computed using the Monte Carlo method. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

steps. Fig. 7 displays the approximate solutions and the relative errors for our deep learning method, where the “exact” solution
0.6606 (d = 3) and 0.0121 (d = 100) can be computed by approximating the stochastic representation

u(x,0) =E|le T+ IX(T)P

1X0) = x|.

The proposed deep learning method achieves the relative error of 0.21% for the 3-dimensional problem and 1.67% for the 100-
dimensional problem. It converges rapidly (within fewer than 10* iterations) and demonstrates strong robustness after convergence.

3.4. Non-linear reaction diffusion equations

In this subsection, we consider the nonlinear reaction diffusion equation, which is described by

ou(x,
"g; Dy %c,,,dk,,,d,Au(x, 0+ /|y . [uCx = ,1) = uCx, D1y (dy) + ulx,1) — uCx, 1> = 0 (16)

with a given terminal condition u(x,T) = g(x).

For the 3-dimensional case, we choose x = [0,0,0]7, # = 1.7, r = 0.2, P = 128, and subnetworks with a width of 128 and 4 hidden
layers. For the 100-dimensional case, we choose x = [0,0,...,0]", § = 1.9, r = 0.5, P = 256, and subnetworks with a width of 512
and 4 hidden layers. The common parameters are set as t =0, T = 0.5, N = 50, M = 10*, and the terminal condition g(x) = 0.5 —
0.4 sin (|x|/10). The final results are obtained after 10° iterations, with an initial learning rate of 2 x 107 (d = 3) and 4 x 107> (d = 100),
which decays by a factor of 0.5 every 2.5 x 10* steps. Fig. 8 displays the approximate solutions and the relative errors for our deep
learning method, where the “exact” solution 0.5546 (d = 3) and 0.2628 (d = 100) can be obtained by the branching diffusion method
[24]. Our method achieves the relative error of 0.39% for the 3-dimensional problem and 0.27% for the 100-dimensional problem.
It converges rapidly (within fewer than 5 x 103 iterations for the 3-dimensional problem and fewer than 2 x 10* iterations for the
100-dimensional problem) and demonstrates strong robustness after convergence.

3.5. Finite Lévy measures

In this subsection, we consider the case of pure jump processes with several classes of finite Lévy measures. Specifically, we use
the developed algorithm to solve fractional PDEs with Lévy measures being uniform distribution, normal distribution, exponential
distribution, and Bernoulli distribution. Therefore, one needs to consider the equation

du(x,1) _
o

/d [u(x — y,0) — u(x, n]v(dy) a7
R

with the initial condition u(x, 0) = u,(x). Here, u is the probability density function of a compound Poisson process with initial value
x( ~ Uy, intensity A, and jump length AX ~ v, which can be statistically calculated by simulating particle trajectories using the Monte
Carlo method.

10
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Fig. 8. (a) Relative error for the 3-dimensional (green) and 100-dimensional (blue) nonlinear problems (16) for 10° iterations of the developed
algorithm. (b) Convergence behavior of the developed algorithm for the 3-dimensional (green) and 100-dimensional (blue) nonlinear problems (16),
where the “exact” solutions (red and orange) are obtained via the branching diffusion method [24]. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 1
The relative errors for (13) (Linear) and (16) (Nonlinear) obtained by Algorithm 1
with subnetworks varying in the number of hidden layers.

No. of hidden layers 0 1 2 3 4 5 6

Li 6.94 24.74 24.82 9.74 6.10 5.20 5.86
Rel. Error,% inear

Nonlinear Nan Nan Nan 0.92 0.04 0.19 0.22

Choosing P =128, T =1, N = 100, M = 10%, and the initial distribution uy(x) = e~ x*/2/\/2z, we test the performance of the
proposed algorithm in solving Eq. (17) with Lévy measures v(dy) = Av(y)dy of uniform distribution v(y) =1, y € [0,1] with A =35,

e—Iy-11

N
1/3,y=1. . . . . . . . . N

{2/3 y= 2 with 4 =5, respectively. Fig. 9 shows the particle trajectories of these types of pure jump Lévy processes with different
jump length distributions simulated by the Monte Carlo method, the probability density obtained by solving the Eq. (17) with the
proposed deep learning algorithm, the “exact” solution obtained by statistically calculating the particle positions, and the absolute
error of the algorithm. The results of the deep learning algorithm are obtained through 10* iterations with a learning rate of 5 x 1074,
and the “exact” solutions are obtained through statistical calculations of 10° independent particle trajectories simulated by the Monte
Carlo method.

normal distribution v(y) =

with A = 3, exponential distribution v(y) = ¢, y > 0 with 4 = 1, and Bernoulli distribution v(y) =

3.6. Approximation effect of neural network

In this section, we investigate three factors that influence the performance of the algorithm: the number of hidden layers in the
subnetworks, the number of samples in Monte Carlo integration, and the choice of activation function. Meanwhile, we also test the
efficiency of our algorithm and present the test results of the algorithm under various dimensions, including the relative errors at
different training steps and computational time costs. Method (10) requires substantial memory (exceeding 64 GB) and computational
resources during execution, which exceeds our resource limitations and is impractial for real-world applications. Therefore, we focus
on testing the performance of the algorithm corresponding to the tensor network version (11). For each factor, we evaluate both a
linear equation and the non-linear Eq. (16) to assess their performance under different scenarios. Except for the specific factors being
tested, the parameter settings for each experiment are consistent with those used in the numerical examples in Section 3.

The depth of the neural network is one of the key factors influencing its performance. To evaluate its impact on the proposed
algorithm, we vary the number of hidden layers in the subnetworks from 0 to 6 and conduct tests on both the 100-dimensional linear
problem (13) and the nonlinear problem (16) (see Table 1). Except for the number of hidden layers of the subnetworks, all other
testing parameters remain consistent with those in Sections 3.1 and 3.4, and the network employs the Softsign activation function

Softsign(x) = ] +x| %
x

11
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Fig. 9. Particle trajectories (1st row) of pure jump Lévy processes with four different finite measures (1st column: uniform distribution, 2nd column:
normal distribution, 3rd column: exponential distribution, 4th column: Bernoulli distribution), plots of the solutions obtained by the proposed deep
learning algorithm for solving (17) and the exact solutions (2nd row), and absolute errors (3rd row). The results of the proposed deep learning
algorithm are obtained through 10* iterations with a learning rate of 5 x 10~*, and the “exact” solutions are obtained through statistical calculations
of 10° independent particle trajectories simulated by the Monte Carlo method.

Table 2

The relative errors for (15) (Linear) and (16) (Nonlinear) obtained
by Algorithm 1, utilizing the non-local integral approximation
method (12) with varying numbers of Monte Carlo samples.

No. of Monte Carlo samples 100 10! 10? 10°

Li 7.58 7.51 9.99 1.22
Rel. Error,% inear

Nonlinear 0.83 0.20 0.08 0.34

For the linear problem (13), the relative error from the tests initially increase, then decrease, and finally shows a slight increase as
the number of hidden layers increases from 0 (linear) to 2 (shallow) and then to 6 (deep). For the nonlinear problem (16), the training
becomes unstable when the number of hidden layers is fewer than 3, which is attributed to the inherent instability of the problem
itself. The relative error also demonstrates an initial decrease followed by a slight increase as the depth increases.

In this paper, we utilize the Monte Carlo method to approximate high-dimensional integrals (9) and design a simplified version of
a tensor neural network (11) to reduce computational costs. To investigate the impact of the number of Monte Carlo samples on the
algorithm’s performance, we fix the number of hidden layers in the subnetwork as 4, select the Softsign activation function, and vary
the number of Monte Carlo samples from 10° to 10° (see Table 2). We evaluate the algorithm’s performance on the 100-dimensional
linear problem (15) and the nonlinear problem (16). The results indicate that for the linear problem, increasing the number of Monte
Carlo samples improves accuracy. However, the number of samples does not significantly affect the solution of the nonlinear problem.

The choice of activation function significantly influences the performance of the algorithm. To evaluate this impact, we select five
common activation functions and test their performance on the 100-dimensional linear problem (14) and the nonlinear problem (16)
(see Table 3). The results demonstrate that, in terms of both accuracy and stability, the Softsign activation function is the optimal
choice. During testing, we observe that a large truncation of the jump length AL(r,) (with a default truncation length of 100 in this
paper) is necessary to prevent value overflow and ensure effective training.

To demonstrate the efficiency of the algorithm, we apply the proposed method to solve problems in various dimensions and
present the convergence behaviour at different iteration steps along with the computational time. Specifically, we test both the linear
problem (15) and the nonlinear problem (16) across five different dimensions (d = 3, 10, 20, 50, 100). The simulation results include
the relative errors at different training steps compared to the “exact" solution obtained via the Monte Carlo method, as well as the

12
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Table 3
The relative errors for (14) (Linear) and (16) (Nonlinear) obtained by Al-
gorithm 1 with subnetworks employing different activation functions.

Activation functions ReLU  SiLU  Sigmoid  Tanh Softsign

Rel. Error,% Linear 0.77 9.15 1.58 25.64  2.89

Nonlinear Nan Nan Nan 0.06 0.27

Table 4

The relative errors and GPU time consumption per iteration step for (15) (Lin-
ear) and (16) (Nonlinear) obtained by Algorithm 1 under different dimensions
and different numbers of iterations.

d Linear Nonlinear
Step Rel. Error,% GPU,s Step Rel. Error,% GPU,s
1x10°  1.29 1x10° 5776
3 1x10* 0.37 0.48 1x10* 4.32 0.25
5x10* 034 5%10* 059
1x10° 0.24 1x10° 0.57
1x10° 206.28 1x10° 38.22
10 1x10* 3.37 0.45 1x10* 0.21 0.23
5x10*  0.08 5x10*  0.19
1x10° 0.01 1x10° 0.22
1x10° 1188.16 1x10° 113.81
4 4
20 1x 10 2.31 0.46 1x10 45.21 0.24
5x10* 1.71 3x10* 0.39
8x 10  0.42 5x10*  0.40
1x10° 0.45 1x10° 0.47
1x10° 63.04 1x10° 23.23
50 Ix10*  6.77 0.48 Ix10*  0.14 0.24
8§x10* 2,51 5x10*  0.47
1x10° 0.12 1x10° 0.53
1x10°  5837.79 1x10°  238.25
100 1x10* 57.58 0.45 1x10* 121.12 0.22
7x10*  4.25 5x10*  0.23
1x10° 2.01 1x10° 0.32

GPU (NVIDIA GeForce RTX 4090) time consumed per training step. For the problems with d = 3, we choose P = 64 and sub-networks
with a width of 128 and 4 hidden layers. For the problems with 3 < d < 50, we choose P = 128 and sub-networks with a width of 256
and 4 hidden layers. For the problems with d > 50, we choose P = 256 and sub-networks with a width of 512 and 4 hidden layers. For
linear problem, we set § = 1.3, r = 0.5, with an initial learning rate of 5 x 10~*, which decays by a factor 0.5 every 2 x 10* iterations.
For nonlinear problems, we use § = 1.9, » = 0.5, with initial learning rates of 4 x 10~ (for d > 50) and 2 x 10~* (for d < 50), which
decay by a factor 0.5 every 2.5 x 10* iterations. The results (see Table 4) show that the training accuracy of the algorithm varies with
the increase of dimensions, and due to parallel training, the GPU time is roughly similar.

Remark 1. To theoretically ensure the effectiveness of the proposed algorithm, a good way is to get the posterior error estimate like
[25]

IX = Xllx + 1Y =Ylly +1Z = Zllz +IU = Ully < C|At+E[|g(X(T) - Y(D)]].
where (X,Y, Z,U) = (X(©), Y (1), Z®), U(t, y)) is the exact solution of the FBSDE and (X, Y, Z,U) = (X(r), Y (1), Z(t), U (1, y)) is the numer-

ical solution of the proposed deep learning algorithm. In other words, it is necessary to find suitable error norms || - ||y, || - lly, Il - Il z»
and || - ||y such that it is controlled by the step size At and the loss function E[|g(X(T") — Y(T)|?].
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4. Conclusion

In this paper, we consider a class of PDEs associated with jump processes with fat-tailed Lévy measure, which involve nonlocal
singular integral operator. To develop deep learning method for solving such equations, we first approximate the nonlocal singular
integral operator and derive the BSDE:s satisfied by the solutions of the approximated equations. These are then discretized to obtain a
corresponding deep learning algorithm. To reduce the computational and memory costs associated with high-dimensional numerical
integration, we propose a structure-preserving, simplified version of tensor neural networks.

The effectiveness of the algorithm is demonstrated by solving four types of PDEs: the diffusion equation with fractional Lapla-
cian; the advective diffusion equation with fractional Laplacian; the advective reaction diffusion equation with fractional Laplacian;
and the nonlinear reaction diffusion equation with fractional Laplacian. The proposed algorithm is verified to be applicable for
solving fractional equations with finite generalized Lévy measures. The developed method reaches the relative error of ©(10~3) for
low-dimensional problems, and ®(10~2) for high-dimensional problems. Through extensive numerical experiments, we explore the
influence of hidden layer depth, Monte Carlo sampling size, and activation functions on the algorithm’s performance. The results
indicate that the algorithm exhibits the highest stability when deeper hidden layers, larger Monte Carlo sample size, and the Softsign
activation function are employed. The efficiency of the algorithm in solving 3D, 10D, 20D, 50D, and 100D problems is tested, in-
cluding the number of convergence steps and GPU time. The further error analysis of the algorithm will be addressed in future work.
This work can be naturally generalized to problems with arbitrary Lévy measures, including those obtained from data, enabling the
application of fractional-order PDEs to high-dimensional complex problems, especially those with long-range flight.
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Appendix A. Proof of Lemma 1

Proof. Define a sequence of stopping times recursively by T, = 0 and 7,, = inf{¢ > T,_;; | X(t) — X(T,_,)| # 0}. For each ¢ > 0, we have

©

WX (0,1) = u(X(0),0) = Y [u(X(t ATyt ATjpy) = (Xt AT)), AT))]

j=0

= Y [UX @ AT =)t ATy = uXE AT, EAT)] + D (XU ATyt ATy ) = (X (¢ ATy =)t ATy
j=0 Jj=0

t t
= /0 <W+%ca,dka,d,,Au(X(s),s)+(,4.Vu)(X(s),s)>ds+,/ca,dka,d,, /O Vu(X(s), s) - d B(s)

'
+ / / [u(X(s=)+y,s) —u(X(s—),s)]J(dy X ds).
0 Jiylzr
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Appendix B. Proof of Theorem 1

Proof. Applying Lemma 1 to u(X(s), s) between s =t and s = T, one can get

T T
X0, — g(X(T) = —/ (W + %Ca,dka,d,rAu(X(S)s $)+ (u- Vu)(X(S),S)>dS - \/Caﬁdka,d,r/‘ Vu(X(s),s) - dB(s)

T
- / / [u(X (s=) = y,8) —u(X(s-),5)]J (dy X ds)
t |yl>r

T T
= , X (), u(X(s),s)ds — wdkadr Vu(X(s),s) - dB
/ S (s, X(9),u(X(s),8))ds — /¢y gkaa, [ u(X(s),s) (s)

T
- / / [u(X(s=) +y,s) — u(X(s—), s)]f(dy X ds).
t |y|>r

O

Appendix C. The difference between the solutions of (1) and (3)
We assume that the solutions to (1) and (3) are u,i € H*(R?) x C!([0,T]), and 3C > 0 such that |f(t, x, u(x,1) — f(t,x, i(x,1)| <

Cle(x,t)| and |V - u(x,1)| < C, V(t,x) € [0,T] x R?, where e(x, ) = u(x, ) — ii(x, ).
First, we estimate the truncation error

| R [ul(x,0)| =

/|| [u(x -y t) —u(x,t)+ yTVu(x, t)] vg(dy) — %cﬂ,dkﬂ’d’,Au(x, 1)
yi<r

=2u® 00,3, ) + Oyl
/ “
Iyl<r

|y|A+d

< G, 0| / WI4dy
|yl<r

.

=C~'|u(3)(x,t)|Sd_l/ 1>Pai
0

= Clu®(x, n|r7.

Next, we estimate the L? error using the energy method. By doing time transformation t — T — ¢, converting (1) and (3) into the
initial value problems, then one can get the error equation

de(x,t) _

o (u-Ve)x,1) + %cﬂydkﬂde,Ae(x, 1+ / [e(x =y, 1) — e(x,Dlvg(dy) + [t x,u(x, 1) — [, x,4(x,1)) + R, [ul(x, ).

[ylzr

Multiplying both sides of the error equation by e and integrating over R¢, we obtain

%%lle(v, t)”iz(Rd) = /Rd e(x,t)(u - Ve)(x,t)dx + %cﬁ'dkﬂ'd,, /Rd e(x,t)Ae(x,t)dx + /Rd e(x,1) [e(x = y,1) —e(x,D)]vy(d y)dx

|y|>r
+ / e(x, [ f(t, x,u(x, 1)) — f(t,x,u(x,1))]dx + / e(x, )R, [u](x, t)dx
Rd Rd
=+ I+ 1II+1IV+ V.
Then, one can estimate these five terms respectively as

I :/ e(x,t)(u - Ve)(x,t)dx
R4

=1/ u(x,1) - Vie(x,H)*dx
2 Jra

-1 /R Vi Dlets D dx < Clet DI

2 L2(R4)’
= %cﬂ’dkﬂ’d’,/ o(x, H)Ae(x, Ndx = —%cﬁ,dkﬁ’dyr/ Ve(x, Dl2dx <0,
R4 R4
111 :/ e(x,1) [e(x = y,1) — e(x,D]vy(dy)dx
R4 |yl>r

=1 / / [~le(x = y. O + 2e(x — y. De(x, 1) — [e(x, D1 | vp(dy)dx
2 Jrd Jyyizr

=1 / / [e(x — y,1) — e(x, DPvy(dy)dx <0,
2 Jrd Jiyzr
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v =/ e(x, ) f (@, x,u(x, 1) — f(t,x,i(x,1))]dx
R4

< / lee, DI1£ (1 x4, 1) — 0 x. 5x. 1) dx
R4
<Clle- Dl gy

and
\ =/d e(x, )R, [u](x,)dx < ||Rr[u](',1)||L2(Rd)||e(‘,1)||L2(Rd)~
R
Combining all above terms result in

d
Z e DI gy S ACHeC DI gy + 2N RAC D 2 lleC, Dl 2ga-

L2(RY) = L2(R4)
Assuming ||e(-,t)||iz(w) # 0, Vt € [0,T], one can obtain

d
E”e(‘, t)”LZ([Rd) < 2C|le(-, t)”LZ(Rd) + ”Rr[u](',t)”LZ([Rdy
According to the Gronwall’s theorem, one can get

leC. Dl 2 gay < Lo(O)r* ™, (c.1)
where L,(f) = %(eza -1) 0s<up leeC-, )N g3 ey -
<s<t

Finally, we assume u, i € C3(R?), and estimate the L* error. Assuming that x*(¢) is the maximum point of e at time r and e(x*(¢), ) >
0, then

de(x*(),1) _ * " de(x*(1),1)
—Q = Ve(x*(1),t) - dx*(t) + 0

< X, u(x* (@), 1) — £ x5 @), a(x* (), 1)) + R, [ul(x* (1), 1)
< Ce(x*(1),1) + | R, [ul(x* (1), DI,

since Ve(x*(¢),1) = 0, Ae(x*(¢),1) <0, and
/| | [e(x* (1) = y,1) — e(x* (), )] vp(dy) < 0.
ylzr

Similarly, one can obtain that when x*(7) is a minimum point of e and e(x*(z), ) < 0, there exists

LD < et 0,00+ IR 1lx" 0,1,

That is
dlleC, Dl Loo(ma)
dt

According to the Gronwall theorem, one can get

llell Lo gea)(®) < Log(r*7, (€.2)

< ClleC, Dl poomay + 1R[], DIl Loo ey

where Lo (1) = (e - 1) sup [l 9l
<s<t
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